

Testing the use of OMERO as a bioimage informatics platform for HIV viral particle tracking

Caterina Strambio De Castillia

Jeremy Luban

Mario Valle (ETH-CSCS)

What is our problem?

People living with HIV (2007)

25 years after the identification of the virus, we still know remarkably little about the cell biology of HIV-1!

What is our approach?

• The question:

How does the HIV-1 virus gains access to the cellular genome to ensure proviral DNA integration?

- The obstacle: the reductionist approach has reached its limit
- The answer: a systematic quantitative strategy requires a multidisciplinary team
 - Virology
 - Cell Biology
 - Bio-Image informatics = integration of
 OME + analysis algorithms +
 integrated image analysis workflows

Who are we?

Cell biology bioimaging

Mario Valle ETH-CSCS Visualization data analysis and management

Caterina Strambio UniGe

HIV-1 Virology

...and the team is growing!

The question: HIV-1 viral entry

- HIV-1 enters the cell and moves towards the nucleus
- Key virus-host interactions influence viral trajectory within the cell
- Biochemical and cellfractionation studies have reached their limit
- Real-time tracking of viral particles and mathematical analysis of movement can provide key insights into the mechanism of infection

Huge challenge: What do we need to understand HIV-1 viral movement?

- 1. Infect primary human cells under strict bio-safety regimens
- 2. Visualize HIV-1 particles as they move within the cell with high spatial and temporal resolution
- 3. Keep track and manage multiple large datasets
- 4. Mathematical analysis of viral trajectories
- 5. Statistical analysis on multiple trajectories
- 6. Integrate with other kind of knowledge

Essential to develop reproducible scientific workflows

The beginning of the answer: real-time 3D video microscopy of HIV-1

HIV-1 moves along the cytoskeleton

Mean Square Displacement analysis of trajectories

The workflow for realtime HIV tracking

Sbalzarini and Koumoutsakos, J Struct Biol, 2005, 151:182

Helmuth et al. J Struct Biol, 2007, 159:347

- SPT: identification of viral trajectories in 3D image stacks over limited time
- Semi automated, supervised trajectory segmentation
- Manual statistical analysis of numerical trajectory data

Stand alone software is being developed...

Sbalzarini and Koumoutsakos, J Struct Biol, 2005, 151:182

...but for systematic use it has to be integrated

Can OMERO provides the glue?

What do we need from OMERO?

✓ Image data management

- ✓ Image data visualization
- Metadata (both acquisition and custom) integration

→Image analysis:

- Modular image analysis
- Keeping track of analysis outputs
- Managing complex workflows: Reproducibility across users, time and space

Facilitate integration of different data types and information source: semantic web

What we have done so far: OMERO testing on two fronts

End user

- Provide feed back on various aspects of OMERO usability and relevance
 - Data model
 - Data integrity and security issues
 - Metadata editability
 - OMERO.editor

Developer

- Test feasibility of a local OMERO analysis paradigm
- Build a small custom C++ client that would serve as the interface between images stored in OMERO and the stand-alone SPT software

OMERO.analysis: local client model c [500] X c [500] Y c [500] Z 166.6 62.9 7.3 8455 9484 8706 0586 Digital Image 161.8 Raw 159.9 Acquisition Data Metadata System O O Quantitative Analysis Data Management, Tagging, Querying 0 4 0 Visualisation Processed Data Metadata

OMERO.cpp: building a small custom client

- Goals
 - Understand Client API writing a small C++ client
 - Why C++?
 - Because the SPT algorithm is in C++
 - Because I know it.
 - Because ICE make languages interchangeable.

Results

- Limited success...
- Connect, list user data, list user projects, list datasets for one project, list images for one dataset, access the image data, access the pixels

CSCS Swiss National Supercomputing Centre

OMERO.cpp: building a small custom client

On the positive side

- It works, and compiles too!
- New API simplifies common tasks

On the negative side

- Documentation is not available or at least not usable (not only about C++ API in general, but also about individual functions)
- Javadoc pages are not up to date (OME vs OMERO not well documented in Javadoc…)
- Code examples: would be useful to be able to share and re-use code the community develops.
- Searchable list-serve archives (along the same lines) and/or community wiki would reduce workload from OME team

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Swiss National Supercomputing Centre

OMERO.analysis: modular analysis paradigm

What we need to allow specialized analysis modules full integration in the image database?
– integrating analysis modules in the server
– analysis modules repository for sharing
– quantitative results stored in the database
–repository for sharing and reusing workflows

OMERO.scripts and .grid: what is their future?

Scientific workflows for bio-image informatics: what do we need...

- Will OMERO support distributed modular analysis architectures?
- OMERO vs BISQUE?
- OMERO.workflow integrating OMERO with software such as TAVERNA to develop standardized bioimage informatics workflows

Thank you!

Caterina Strambio De Castillia

Jeremy Luban

Mario Valle (ETH-CSCS)

