

(ab)using omero

Gianluigi Zanetti

(gianluigi.zanetti@crs4.it)

- Center for Research, Development, and Advanced Studies in Sardinia
- Interdisciplinary research center focused on computational sciences
- Located in the POLARIS
 Science and Technology
 Park (Pula, Sardinia, Italy)
- Operational since 1992
- RTD staff of ~180 people

CRS4
POLARIS Edificio 1
C.P. 25
09010 Pula (CA), ITALY
www.crs4.it

Sardinia and its genetic isolated founder populations

- Sardinia is characterized by genetic isolated founder populations
 - An island that is big enough and where it is difficult to travel
- CRS4 cooperates with CNR-IRGB in two large scale studies
 - on longevity
 - and auto-immune diseases

Progenia: search for genetic influences on longevity

- Joint project CNR-IRGB/NIH
- Population level studies
 - 6,148 individuals aged 14-102y, 95% are known to have all grandparents born in Sardinia
- Highly characterized samples
 - Traits (> 150) ranging from anthropometric measurements to personality facets, repeated measurements on the scale of a decade
 - High resolution genotyping, (soon) deep sequencing
- Cast of '00, see *

^{*} http://sardinia.nia.nih.gov/Project Team/project team.html

Auto-immune diseases

- Collaboration with CNR-IRGB
- Population level study
 - 4,000 affected individuals and 2,000 healthy volunteers
 - High resolution genotyping
 - Order of 10² reseq.
- Cast of '00, see *

Auto-immune diseases such as type-1diabetes and MS have in Sardinia one of the highest incidences world-wide

Multiple sclerosis prevalence in Europe (from Pugliatti et al. Eu. J. Neur. 2006)

^{*} Sanna S., Pitzalis M., Zoledziewska M., et al. Nat Genet. 42, 495 - 497 (2010).

Scale of the problem (1/4)

Scale of the problem (2/4)

- Transition from independent 'labs' to a single distributed pipe-line
 - Biosamples are geographically distribuited
 - Multiple genomic technologies
 - Multiple clinical data sources
 - Existing biobanks (CNR-IRGB, Progenia)
 - Feed from Regional Health system
 - Comparable with a small hospital
- Non trivial 'Data intensive' problem
 - Genotyping dataset order of 10⁴ ind.
 - Deep sequencing datasets order of 10³ ind. (>4TB/week)
- Moving Target
 - More detailed clinical data
 - Soon start adding epigenomic data, e.g., ChIP-seq, RNAseq, ...

A software crisis

Example: re-sequencing pipeline (old way)

Example: re-sequencing pipeline (new way)

A software crisis: aka excel will break!

Distributed excel is an inherently brittle technology

Need to capture statics and dynamics

- Electronic Health Record
 - Multiple sources
 - Implementation specific details
- Samples
 - Bio and synthetic
 - Physical location / big dataset
 - Chain of Custody
- Operation description
 - 'Experimental' and 'digital' ops
- Computational driven inference process
 - Uniform access to data

results

process

Desiderata: Model state and transitions

Desiderata: Keep track of dependencies

Desiderata : Uniform SNPs mngmt

```
0.3 0.1 ...
                                         dataset1
         AA 0.2 0.9
         BB 0.8 0.1
                           0.7 0.9 ...
                               0.1 ... dataset2
         AA
                 0.9 0.9
                               0.9 ...
         BB
                       Flanking regions
Reference genome
                CCGACCTAGTAGGCAA[A/G]TAGACACTGAGGCTGA
```


Desiderata: Clean access to data (1/3)

```
def main():
    kb = KB(driver='omero') (...)
    maker, model = 'crs4-bl', 'taqman-foo'
    mset = kb.get_markers_set(maker, model)
    s = gkb.get_gdo_iterator(mset)
    counts = algo.count_homozygotes(s)
    mafs = algo.maf(counts)
    hwe = algo.hwe(counts)
```


Clean access to data (2/3)

```
def main():
    kb = KB(driver='omero')(...)
    ...
    enrolled = kb.get_enrolled(study)
    #--
    for e in enrolled:
        dsets = kb.get_gdos(e.individual)
        support, mean, sigma = compare_dsets
(dsets)
```


Clean access to data (3/3) (well, if you like numpy)

```
def compare dsets(gdos):
  support, mapping = algo.find shared support(gdos)
  ad = [np.vstack([g['probs'][:,i], g['confs'][:,i]])
        for (g, i) in it.izip(gdos, mapping)]
 map(lambda : np.reshape(, (1,) + .shape), all data)
 all data = np.vstack(ad)
 v = all data[:, 0:2,:].sum(axis=0)
 v2 = (all data[:, 0:2,:]**2).sum(axis=0)
 N = all data.shape[0]
 mean = v/N
  # FIXME: I know, this is not the variance...
 var = v2/N - mean**2
  return (support, mean, np.sqrt(var))
```


Computable data semantics is crucial

"Semantic understanding belongs to the humans that wrote the adapter"

Computable clinical semantics

```
property = <[openehr::119]>
                                                                                                            list = <
                                                                  T Test name
                                                                                                         ["1"] = <
                                                                  T Diagnostic service
                                                                                                        units = <"qm/l">
                                                                  T Test status 📃
                                                                                                        magnitude = <|>=0.0|>

    Specimen detail 
    ■

                                                                  Q Haemoglobin 🗏
                                                                  Q Red cell count (RCC)
                                                                  1:2 Packed cell volume (PCV)
                                                                  Q Mean cell haemaglobin concentration (MC=1)
                                                                  Q Mean cell volume (MCV)
                                                                  Q Mean cell haemaglobin (MCH

√ Test identification

                                                                  1:2 Red cell distribution width (RDW
                          Protoco
                                                          Data
■♥ Datetime result issued
                                                                  Q Erythrocyte sedimentation rate (ESF=
                                      Full blood count

¶ Mean platelet volume (MPV

■

                     Description
                                                                  1:2 Platelet distribution widtl
                                                                  Q Platelet count 🗏
                                                                  1:2 Plateletcrit
                                                                  Q White cell count
                                                                  🖳 White cell differential
                                                                  ? Result
                                                                  A Per-result annotation
                                                                  T Overall interpretation

■
                                                                  Multimedia representatio
                                                                    ? Any event 🗏
```

... ADL SNIPPET ELEMENT[at0078.7]

value matches {

C DV QUANTITY <

occurrences matches {0..1} matches {
-- Mean cell haemaglobin conc. (MCHC)

Keep biomedical & computational semantics

Omero is agnostic

Configurable, distributed, platform that deals with collections of objects

Agnostic vs objects models

Agnostic vs programming languages (client side)

Omero can grow

Meta class description of objects

Automatically map openEHR archetypes to models

Omero Tables!

Minimal down-time for model set extension

Keep db, install delta (probably an hack)

Misusing Omero

More Omero misuses

Meta job dispatcher

Hadoop jobs

Desiderata: Keep track of dependencies

An omero specialization

New models and related sugar

- Omero is much more than bioimages handling
- Adding sugar has been enough for our needs
 - There could be some ad-hoc improvements...
- We are hiring....

CRS4
POLARIS Edificio 1
C.P. 25
09010 Pula (CA), ITALY
www.crs4.it