
OME User’s Meeting 2011

Kevin Eliceiri
 (eliceiri@wisc.edu)

Curtis Rueden
(ctrueden@wisc.edu)

Laboratory for Optical
and Computational
Instrumentation (LOCI)
http://www.loci.wisc.edu
U. Wisconsin at Madison

Mission of LOCI:

 New optical instrumentation to facilitate studies
of the dynamics of living specimens.
 Better software for capture and visualization of
dynamic, 3-D biological events
 Been OME Development partner since 2003
 Image Informatics for multidimensional data

  spatial and temporal
  spectral and lifetime dimensions
 polarization 

Fluorescence,
Spectra, Lifetime

(λ,τ)

Time-Lapse
(t)

Phase, Polarization,
Scatter, Harmonics

(φ, θ,…) Space
(x, y, z)

Hardware
Acquisition software

Analysis and Visualization
Data Management

Our data:

LOCI-Madison Informatics Group- 2011

Kevin Eliceiri
Director
LOCI

Curtis Rueden
Lead LOCI
Developer

Melissa Linkert
Lead Bio-Formats
(Glencoe Programmer
in residence)

Johannes
Schlindelin
Visualization
Scientist

Barry Dezonia
ImageJ2
Developer

Jimmy Fong
Lifetime Analysis
Researcher

Aivar Grislis
ImageJ2
Developer

Mark Hiner
Bio-Formats
Graduate Programmer

Andrew Johnson
Project Forward
Graduate Researcher

Eric Alexander
OME XML Metadata
Graduate Programmer

Abhinav Tallavajhula
Acquisition
Graduate Programmer

• Specific OMERO linked applications
• BK Cho in Murphy lab on Omero.searcher
• Forward Project for data dissemination

• Originated OME-TIFF in 2004
• Now fully integrated into OMER0
• Used by many open and commercial tools
• Our current focus on robust tools to read and write
OME-TIFF

• Originated Bio-Formats in 2005
• partnership with OME and Glencoe
• Over 100 formats
• Over 25,000 installations
• Recent focus on native bindings

• XML Schema Improvements for Acquisition
• Our WiscScan software and now MicroManager
• Plans to extend to others that want richer “OME-TIFF”

• Interoperability between OME and other tools

• ImageJ 2.0 (ImageJDev.org)

Overview of our OME efforts

Bio-Formats: the tool for interoperability

7

Open Source Toolkit Development

LOCI/UW-Forward
Collaboration

•  Goal:
–  Provide access to LOCI datasets via Forward:

•  UW Libraries’ system-wide resource discovery
application (forward.library.wisconsin.edu)

•  Requirements:
–  Mapping OME-XML elements to METS/MODS

elements
–  Adding description and opt-in functionality to

WiscScan
–  Automating metadata transformations (OME to

METS) and export of data/metadata to Forward

8

Getting Data into Forward

•  Step 1: Add descriptive metadata in WiscScan
–  Title (Project Name)
–  Experiment description (Description)
–  Keywords (Annotations)

•  Step 2: Opt in
–  Check-box in WiscScan experiment window

•  Step 3: WiscScan and Forward do the rest
–  “Thumbnail” and metadata automatically uploaded

to an OMERO directory that Forward harvests
regularly

9

WiscScan Fields
\Needed for Forward

10

Sample LOCI
Record in UW-Forward

11

Big Picture

12

•  LOCI data fully searchable and
discoverable in UW-Forward

•  Users searching for books/articles will
now find datasets alongside traditional
catalog results

•  Greater exposure for data and
emphasis on research data as a
valuable campus resource

•  Can be extended to Micromanager

Do the Math
•  The potential size of a biological dataset has

exploded:
–  A typical biological image is 512 x 512 pixels
–  There can be 30+ slices in an image stack
–  There can be 100+ timesteps in a time series
–  There can be 30+ channels at each pixel

•  512 x 512 x 30 x 100 x 30 x 4 bpp > 80 GB

Desired Features for visualizing a
modern biological dataset:

1.  View image stacks in 2D and 3D
2.  Fast animation of these stacks
3.  Roam through all dimensions in real time
4.  Useful ways to sift through data’s non-spatial dimensions,

to discover meaningful data quickly
5.  Maintain a reasonable memory footprint even when the

dataset is larger than the computer’s available memory

ImageJ
•  ImageJ is an excellent 2D image viewer

–  Developed by Wayne Rasband at NIH
–  http://rsb.info.nih.gov/ij/

•  Supports image stacks (3D), but only one plane at a time
–  Plugins such as Volume Viewer allow for 3D rendering
–  “WiscScan 4D Data Browser” plugin facilitates quick browsing of 4D datasets produced

by WiscScan
•  http://www.loci.wisc.edu/4d/

–  Another option for multidimensional support is the Image5D plugin
•  Very large datasets can be handled using the Virtual Stack Opener plugin with

reasonable performance
•  Overall, ImageJ is excellent for #1, #2 and #3, but not as developed for #4 and #5

  ImageJDev: an NIH-funded project to
produce the next generation of ImageJ

  Partnership between several
institutions:

-  LOCI at UW-Madison
-  MBL at Woods Hole
-  Broad Institute of MIT and Harvard
-  Fiji group (MPI-CBG, Uni/ETH Zurich,

etc.)
See also: imagejdev.org/collaborators

ImageJ Hackathon-Madison 2011

Guiding Principles

  Preserve backwards compatibility
  Maintain good performance
  Support N-dimensional imaging
  Use common input and output for data
  Minimize complexity

-  Introduce dependencies only when
benefits outweigh disadvantages

  Employ modern software development practices

Vision

  What is ImageJ's greatest strength?

Vision

  What is ImageJ's greatest strength?
-  It's extensible by writing plugins

Vision

  What is ImageJ's greatest strength?
-  It's extensible by writing plugins

  How can we expand on this potential?

Vision

  What is ImageJ's greatest strength?
-  It's extensible by writing plugins

  How can we expand on this potential?
-  Plugins as modular “building blocks”

Vision

  What is ImageJ's greatest strength?
-  It's extensible by writing plugins

  How can we expand on this potential?
-  Plugins as modular “building blocks”

  What does modularity gain us?

Vision

  What is ImageJ's greatest strength?
-  It's extensible by writing plugins

  How can we expand on this potential?
-  Plugins as modular “building blocks”

  What does modularity gain us?
-  Modularity facilitates interoperability

The Need

  Extensibility
  Modularity
  Interoperability

Aims

1.  Improve ImageJ’s core architecture
a)  Separate data model from user interface
b)  Develop extensions framework for algorithms
c)  Broaden the image data model

2.  Expand interoperability with other tools
3.  Grow ImageJ community resources
See also: imagejdev.org/proposal

The Challenge

  How do we maintain compatibility?
-  Will plugins and macros still work?
-  Do other programs work with ImageJ 2.0?

Design

  Considered several design approaches
-  Iterative (modify existing IJ1)
-  Greenfield (new application)
-  Delegation (change IJ1's internals)
-  Adaptation (leave IJ1 alone)

  Adaptation: IJ2 includes IJ1 as a library
  IJ1 and IJ2 grow and evolve together

Progress

Modular Design

  Divided software into
functional components

  Facilitates a cleaner design
  Provides flexibility to those

using ImageJ as a library
  Mid-April: 15K lines of code
  Mid-June: ~43K lines of code

-  Excludes ImgLib and IJ1

Progress: Compatibility

  Data structures converted between IJ1 and
IJ2 behind the scenes

  Microscope icon indicates IJ1 legacy plugin

Progress: ImgLib

  ImgLib written by Stephan Preibisch &
Stephan Saalfeld of MPI-CBG

  Many possible storage strategies
-  Data in array, file on disk, database...

  Type-independent algorithms and plugins
-  Signed and unsigned integer, floating

point
-  Bit depths: 1, 8, 12, 16, 32, 64 bit

Progress: Bio-Formats

  Adapted ImageJ to use Bio-Formats
natively for reading file formats

  Files are opened as N-dimensional,
ImgLib-backed images

  Existing plugin example:

Progress: Declarative Plugins

ImagePlus original = WindowManager.getCurrentImage();

GenericDialog gd = new GenericDialog("\"Tubeness\" Filter”);
gd.addNumericField("Sigma: ",
 (calibration==null) ? 1f : minimumSeparation, 4);
gd.addMessage("(The default value for sigma “ +
 "is the minimum voxel separation.)");
gd.addCheckbox("Use calibration information", calibration!=null);

gd.showDialog();
if (gd.wasCanceled()) return;

double sigma = gd.getNextNumber();
boolean useCalibration = gd.getNextBoolean();

TubenessProcessor tp = new TubenessProcessor(sigma, useCalibration);

Progress: Declarative Plugins

  Declarative plugin example:
@Parameter(label="Input image")
public ImagePlus original = null;

@Parameter(label="Sigma")
public double sigma = 1.0;

@Parameter(label="Use calibration")
public boolean useCalibration = false;

@Parameter(label="Output image", output=true)
public ImagePlus result = null;

public void run(String ignored) {
 if (original == null)
 original = WindowManager.getCurrentImage();
 TubenessProcessor tp = new TubenessProcessor(sigma, useCalibration);
 ...
}

Progress: Core Plugins

  Translating ImageJ core
plugins to ImageJ2 and/or
ImgLib—93 done so far

Progress: ROIs

  2D planar ROIs only for now; more later
  Using JHotDraw (same as OMERO.insight)

Progress: CellProfiler

  CellProfiler is a tool for executing high-
throughout image analysis pipelines

  Achieves better interoperability with ImageJ
using the declarative plugin mechanism

Progress: Requirements

  Gathered feedback from the community
  Major areas of ImageJ

-  Data model & image processing
-  Visualization & user interface
-  Input & output
-  Segmentation & regions of interest
-  Scripting & plugins

Progress: Development Tools

  Web site
  Unit test suite
  Continuous integration: Hudson
  Source control: Subversion & Git
  Project management: Maven & Trac

Future Releases

  ImageJ v2.0.0-beta series due July-September
-  Focus on documentation and community feedback

  ImageJ v2.0.0-final is due on October 1
-  Finalized API for ImageJ v2.x

  For details, see:
-  http://dev.imagejdev.org/trac/imagej/roadmap

Benefits of ImageJ2
  What Will ImageJ 2.0 Do for Me?

-  Work with existing plugins and macros
-  Work with new, exciting plugins and

scripts
-  Handle larger, more complex datasets
-  Multidimensional visualization tools
-  Easier to link with other software
-  Easier plugin management

ImageJ2 + OME
  OMERO is powerful server-side imaging software
  ImageJ is powerful client-side imaging software
  Both paradigms are valuable to scientists
  Many operations are common to client & server

-  E.g.: Bio-Formats is used for both

  Goal is to identify more areas for code sharing:
-  Big images (e.g., tiling with mipmaps)
-  Image rendering and thumbnails
-  Many others

Acknowledgements
  Principal Investigators

-  Kevin Eliceiri (LOCI), Rudolf Oldenbourg (MBL), Anne Carpenter
(Broad)

  Developers
-  Grant Harris, Barry DeZonia, Aivar Grislis (ImageJDev)

-  Lee Kamentsky, Adam Fraser (CellProfiler)

  Collaborators
-  Wayne Rasband (ImageJ)

-  Pavel Tomancak, Johannes Schindelin, Albert Cardona (Fiji)

-  Stephan Preibisch, Stephan Saalfeld (ImgLib, Fiji)

-  Mark Longair, Jean-Yves Tinevez (Fiji)

-  Jason Swedlow, OMERO development team (OME)

