OMERO Implementation at Imperial College London

- **Installation, technical solutions, data integration**: Bioinformatics Support Service (Mark Woodbridge, Chris Tomlinson)

- **Testing & Users**: Facility for Imaging by Light Microscopy (FILM) (Martin Spitaler, Christian Liebig, Steve Rothery), facility users, some non-facility users

- **Time scale**:
 - first test installation: April 2008
 - large-scale import test and feedback: June 2009
 - first tests with live data: December 2009
 - general roll-out to facility users: from January 2010
Deployment Strategy

• Extensive research
 – Hardware
 – Formats

• Working relationship
 – IT
 – Bioinformatics
 – Imaging

• Candidate Users/Projects
 – Scale
 – Formats

• Expansion
 – Infrastructure
 – Support
Deployment Issues

- Software upgrades
 - Planning and testing
 - Web Start
- Authentication
 - SSL
 - Directory
 - SSO
- Data in/out
 - Formats
 - Metadata
 - Archival (and integrity)
 - Access
- Onboarding
 - Scalability
 - Tutorials
Ongoing Work

• Data management
 – Experimental workflows
 – Long-term storage
• Software pipelines
• Server-side processing
• Institutional integration
OMERO/XperimentR (Assay)
OMERO/XperimentR (Repository)
OMERO/XperimentR (Metadata)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>29.05.07 raw_Series027.tif</td>
</tr>
<tr>
<td>Image date</td>
<td>2007 06 19 08:10:43</td>
</tr>
<tr>
<td>Dimensions (XY) [px]</td>
<td>1024 x 1024</td>
</tr>
<tr>
<td>Pixel size (XYZ) [μm]</td>
<td>352.77777 x 352.77777 x 0.0</td>
</tr>
<tr>
<td>Z-sections</td>
<td>1</td>
</tr>
<tr>
<td>Timepoints</td>
<td>1</td>
</tr>
</tbody>
</table>
User overview

- Omero users:
 - FILM:
 - facility staff: microscope tests, user projects
 - researchers currently using OMERO: ~15
 - (potential users: ~380 individual microscopists / ~120 groups)
 - outside FILM:
 - EM (OMERO trial)
 - Photonics (fast Flim, OMERO trial)

- research areas: cell biology, developmental biology, immunology, infection biology, physiology, stem cell research, biological engineering

- methodologies: widefield, confocal, two-photon (in vivo), Flim, TIRF, PALM / STORM (in development), high-throughput screening
Microscope overview, file formats

- Widefield:
 - Zeiss Axiovert 200M with Hamamatsu HCImage (*.TIFF, *.CXD) and Perkin Elmer Volocity (Volocity database format)
- Confocal:
 - Zeiss LSM-510 (*.LSM)
 - Leica SP-2 (TIFF, *.LEI)
 - Leica-SP5 (LIF)
- Flim:
 - Becker-Hickel (*.SPC)
- HTS:
 - Cellomics (*.C01)
User experience - file formats

<table>
<thead>
<tr>
<th>File type</th>
<th>Pixel data</th>
<th>Meta data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamamatsu HCImage (*.TIFF, *.CXD)</td>
<td>yes</td>
<td>partially</td>
</tr>
<tr>
<td>Perkin Elmer Volocity (Volocity database format)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Zeiss LSM</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Leica SP2 LEI</td>
<td>yes (mostly)</td>
<td>most</td>
</tr>
<tr>
<td>Leica SP5 LIF</td>
<td>yes (mostly)</td>
<td>most</td>
</tr>
<tr>
<td>Becker-Hickl SPC</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Cellomics</td>
<td>not tested</td>
<td>not tested</td>
</tr>
</tbody>
</table>
Remaining issues:

- **Hamamatsu HCImage (*.TIFF, *.CXD):**
 - XYZT not supported
 - channel information, exposure time, gain, … not detected (time course is detected)
 - metadata are imported in raw format, but not interpreted

- **Volocity:**
 - not supported, indirect via OME-TIFF not possible, apparently due to an export fault

- **Leica SP2 LEI:**
 - lambda-scan imported, but as a time series (metadata not correct)
 - import ‘unstable’

- **Leica SP5 LIF:**
 - lambda-scan as for LEI
 - MP laser settings not detected

- **Becker-Hickl SPC:**
 - not supported
User experience - usability

• the core functionality of OMERO is seen as extremely useful:
 • central repository of data from various microscopes
 • easy visualisation
 • easy access from any location
 • sharing (but too limited for routine usage)
 • quick access to archived data and OME-TIFF

• visualisation:
 • generally good, many good features (split screen, copy / paste rendering settings, greyscale,
 • rendering limitations limit its usability (visualisation is not quantitative, due to autocontrast, positive and negative controls appear with equal brightness)
 • the problem of side-by-side visualisation of many images is unsolved:
 • zoom too small in thumbnail view
 • split / greyscale visualisation not available

• data archiving:
 • in principle great solution for central data archiving
 • main problem: unreliable archiving (easy to forget archive tick box, not option to set it by default)
 • following from this, data duplication (local storage is preferred)
Wish list

Metadata:
- support for missing formats
- confocals: pinhole size as Airy Units (in addition to micrometer)

Data storage:
- it should be possible to make archiving non-optional in the preferences (or by administrator)
- when deleting data, the original image data should be deleted (or quarantined)

Usability:
- rendering!
 - option to turn it off by default throughout
 - must accept values outside min / max pixel values
- UNDO functions
- user preferences:
 - screen layout
 - default rendering / visualisation (e.g. min / max, greyscale, split, …)
 - data archiving on

Sharing:
- sharing via INSIGHT
- access to archived file via sharing and / or export as OME-TIFF
- hierarchy preserved in shared files (sharing of whole folder / experiments)
Future plans

Improving implementation:
- improved integration in lab workflow (annotation / sharing)
- final data storage solution

Improving implementation:
- improved integration in lab workflow (annotation / sharing)
- final data storage solution

Improving data quality:
- annotation with (compulsory?) experimental metadata on upload
- integration with other data (Systems Biology)

Improving usability:
- integration with image analysis (Definiens, CellProfiler):
 - software should read image data from OMERO, analyse them and write data back into OMERO, together with analysis protocols (logs) and results
 - raw data, analysis logs and results should be automatically linked in OMERO
 - ideally, all data should be visualised in easily accessible form (e.g. multiwell plate layout)
Cooperations - THANKS

• FILM staff: Christian Liebig (now Tübingen), Steve Rothery, Mark Scott
• Bioinformatics Support Service: Mark Woodbridge, Chris Tomlinson, Sarah Butcher
• OMERO team Dundee: Jason Swedlow, Will Moore, …
• Our patient users, first and foremost Marek Cebecauer (Imperial College / University Prague)
• Hamamatsu support, Leica engineers, Definiens Support