OMERO Implementation at Imperial College London

Imperial College London

Bioinformatics
Support
Service

Martin Spitaler

Mark Woodbridge

OMERO Implementation at Imperial College London

- <u>Installation, technical solutions, data integration</u>: Bioinformatics Support Service (Mark Woodbridge, Chris Tomlinson)
- <u>Testing & Users</u>: Facility for Imaging by Light Microscopy (FILM) (Martin Spitaler, Christian Liebig, Steve Rothery), facility users, some non-facility users
- Time scale:
 - first test installation: April 2008
 - large-scale import test and feedback: June 2009
 - first tests with live data: December 2009
 - general roll-out to facility users: from January 2010

Deployment Strategy

- Extensive research
 - Hardware
 - Formats
- Working relationship
 - IT
 - Bioinformatics
 - Imaging
- Candidate Users/Projects
 - Scale
 - Formats
- Expansion
 - Infrastructure
 - Support

Deployment Issues

- Software upgrades
 - Planning and testing
 - Web Start
- Authentication
 - SSL
 - Directory
 - SSO
- Data in/out
 - Formats
 - Metadata
 - Archival (and integrity)
 - Access
- Onboarding
 - Scalability
 - Tutorials

Ongoing Work

- Data management
 - Experimental workflows
 - Long-term storage
- Software pipelines
- Server-side processing
- Institutional integration

OMERO/XperimentR (Assay)

OMERO/XperimentR (Repository)

OMERO/XperimentR (Image)

OMERO/XperimentR (Metadata)

User overview

- Omero users:
 - FILM:
 - facility staff: microscope tests, user projects
 - researchers currently using OMERO: ~15
 - (potential users: ~380 individual microscopists / ~120 groups)
 - outside FILM:
 - EM (OMERO trial)
 - Photonics (fast Flim, OMERO trial)
- research areas: cell biology, developmental biology, immunolgy, infection biology, physiology, stem cell research, biological engineering
- methodologies: widefield, confocal, two-photon (in vivo), Flim, TIRF, PALM / STORM (in development), high-throughput screening

Microscope overview, file formats

- Widefield:
 - Zeiss Axiovert 200M with Hamamatsu HClmage (*.TIFF, *.CXD) and Perkin Elmer Volocity (Volocity database format)
- Confocal:
 - Zeiss LSM-510 (*.LSM)
 - Leica SP-2 (TIFF, *.LEI)
 - Leica-SP5 (LIF)
- Flim:
 - Becker-Hickel (*.SPC)
- HTS:
 - Cellomics (*.C01)

User experience - file formats

File type	Pixel data	Meta data
Hamamatsu HCImage (*.TIFF, *.CXD)	yes	partially
Perkin Elmer Volocity (Volocity database format)	no	no
Zeiss LSM	yes	yes
Leica SP2 LEI	yes (mostly)	most
Leica SP5 LIF	yes (mostly)	most
Becker-Hickl SPC	no	no
Cellomics	not tested	not tested

User experience - file formats

Remaining issues:

- Hamamatsu HCImage (*.TIFF, *.CXD):
 - XYZT not supported
 - channel information, exposure time, gain, ... not detected (time course is detected)
 - metadata are imported in raw format, but not interpreted
- Volocity:
 - not supported, indirect via OME-TIFF not possible, apparently due to an export fault
- Leica SP2 LEI:
 - lambda-scan imported, but as a time series (metadata not correct)
 - import 'unstable'
- · Leica SP5 LIF:
 - lambda-scan as for LEI
 - MP laser settings not detected
- Becker-Hickl SPC:
 - not supported

User experience - usability

the core functionality of OMERO is seen as extremely useful:

- central repository of data from various microscopes
- easy visualisation
- easy access from any location
- sharing (but too limited for routine usage)
- quick access to archived data and OME-TIFF

visualisation:

- generally good, many good features (split screen, copy / paste rendering settings, greyscale,
- rendering limitations limit its usability (visualisation is <u>not quantitative</u>, due to autocontrast, positive and negative controls appear with equal brightness)
- the problem of side-by-side visualisation of many images is unsolved:
 - zoom too small in thumbnail view
 - split / greyscale visualisation not available

data archiving:

- in principle great solution for central data archiving
- main problem: unreliable archiving (easy to forget archive tick box, not option to set it by default)
- following from this, data duplication (local storage is preferred)

Wish list

Metadata:

- support for missing formats
- confocals: pinhole size as Airy Units (in addition to micrometer)

Data storage:

- it should be possible to make archiving nonoptional in the preferences (or by administrator)
- when deleting data, the original image data should be deleted (or quarantined)

Usability:

- rendering!:
 - option to turn it off by default throughout
 - must accept values outside min / max pixel values
- UNDO functions
- user preferences:
 - screen layout
 - default rendering / visualisation (e.g. min / max, greyscale, split, ...)
 - data archiving on

Sharing:

- sharing via INSIGHT
- access to archived file via sharing and / or export as OME-TIFF
- hierarchy preserved in shared files (sharing of whole folder / experiments)

Future plans

Improving implementation:

- improved integration in lab workflow (annotation / sharing)
- final data storage solution

Improving implementation:

- improved integration in lab workflow (annotation / sharing)
- final data storage solution

Improving data quality:

- annotation with (compulsory?) experimental metadata on upload
- integration with other data (Systems Biology)

Improving usability:

- integration with image analysis (Definiens, CellProfiler):
 - software should read image data from OMERO, analyse them and write data back into OMERO, together with analysis protocols (logs) and results
 - raw data, analysis logs and results should be automatically linked in OMERO
 - ideally, all data should be visualised in easily accessible form (e.g. multiwell plate layout)

Cooperations - THANKS

- FILM staff: Christian Liebig (now Tübingen), Steve Rothery, Mark Scott
- Bioinformatics Support Service: Mark Woodbridge, Chris Tomlinson, Sarah Butcher
- OMERO team Dundee: Jason Swedlow, Will Moore, ...
- Our patient users, first and foremost Marek Cebecauer (Imperial College / University Prague)
- Hamamatsu support, Leica engineers, Definiens Support