

promiscuous omero

aka

omero as a general purpose framework for biomedical data management

PG-13

Our first goals (about 3 years ago)

- to have scalable, uniform, computational access to large amounts of *-omic heterogeneous data
 - From bio-samples to next gen sequencing data
- to be able to track data dependencies
 - model both objects and actions that connect them
- to support computation on meta information and data dependency tree
 - E.g., plan optimal titer-plate loading for next experiment
- to support data access from multiple, geographically distributed, labs
 - {Pula,Alghero,Lanusei,Monserrato}@sardinia, ...
- but first and foremost: no more excel sheet (!)

omero.biobank

specialization of the "omero framework" to the handling of *omic data

- customized models and data structures for biomedical data handling:Genotyping data, clinical records, vessels, ... (49 customized models)
- network of objects connected by actions
- can track transformations performed on the data
- provides a rich API and tools for data input and queries

heavy use of omero tables

- snp markers, markers set, alignments, phenotype records
- all client side code (~30k lines)
 - mostly syntactic sugar
 - mostly boring stuff (importers/exporters/...)

omero.biobank: use

Data mainly from two large scale studies

- autoimmune disease (CNR-IRGB)
- longevity (CNR-IRGB, NIH-NIA)

Currently handling:

- > 38000 individuals (~ 16.500 with parental relationships)
- 26.800 clinical records
- ~28.200 vessels, ~330 Titer Plates
- 4 Genotyping technologies
 - Affymetrix GWH 6.0 (~935.000 markers, ~7.000 gtypes)
 - Illumina Immunochip (~196.000 markers, ~10.000 gtypes)
 - Illumina Hu OmniExpress (~730.000 markers, ~3.000 gtypes)
 - Illumina Hu Exome (~ 240.000 markers, ~5.000 gtypes)

omero.biobank: problems

- Not particularly biologist-friendly
 - Programmatic/script interface too complex for casual user
 - Tracking complex operations (action(s)) is rather cumbersome
- Need to access multiple computing environments
 - Batch system
 - Hadoop
 - largest cluster 3200 cores, uses an 'elastic' hadoop-grid-engine resource allocation scheme
 - Different filesystems
- Users are in different locations:
 - From the same island to different continents

omero.biobank: omero specific problems

- no omero integrated solution for dependency graph navigation
 - We are currently using client side solution (pygraph) [slow]
 - Next: external graph handling service [fast, but dangerous]
- slow on large data (tables) operations
 - improved with ColumnArray<X>
 - more on this later
- external file handling headaches
 - DataObjects point to physical files not directly managed by omero

refined goals (18 months ago)

- to have a simple, biologist friendly, user interface
- to simplify standard data processing
 - facade to hadoop, batch job submission
- tools to build and share workflows
- maintain history of operations performed
 - share histories, save histories in omero,...
- decouple logical file view from file system details
 - meta-information based file system

omero.biobank + galaxy + iRODS

Galaxy (usegalaxy.org) web interface for CLI tools

History of operations performed

Galaxy: quasi-lab-book

Galaxy: workflow editor

Interaction with omero.biobank

Façade to hadoop tools

iRODS as a Decoupling System

- IRODS is an integrated Rule-Oriented Datamanagement System
 - uses unique logical names that are separate from the names as stored physically, providing a global 'logical name-space'
 - Rules to automatically treat data on insertion and retrieval
 - Ability to tag data sets (e.g., sample id, data format)
 - Web based and command line interfaces
 - transfers data across the network in an integrated manner (parallel threads for large files)
- We use IRODS as a front end to our heterogeneous storage system
 - about 4.5PB in various boxes

iRODS is developed by DICE UNC (http://www.irods.org)

Short-term vs long term memory

Typical workflows

- have several steps and may fail
- unwise to commit intermediate data to repository

Solution:

- Short-term memory → Galaxy history
 - Tracks steps while the computation is running
 - Permits to iteratively build a "good protocol"
- Long term memory → OMERO.biobank
 - Record history in OMERO.biobank

galaxy + omero + iRods: glue

extensions to galaxy

- support communication with omero.biobank
- improved galaxy histories API to support omero consumption
- Almost all relevant tools galaxy wrapped
 - omero.biobank import/export/query tools
 - hadoop based tools for NGS and genotyping
 - •
- we are extending galaxy objectstore to directly support iRODS objects (files and collections)

iRODS

- external reference data is moving to iRODS
- omero.biobank is moving to irods:// file paths
- iRODS rules to simplify registration of huge dataset and galaxy integration

galaxy + omero + iRods

User community: biologist/bioinformaticians

- About 50 external, 10 internal users
- All omero.biobank import, most export and queries

• Problems:

- «designed» to have a human in command
 - Manage complex workflows chains, handle failures
- Boring, dangerous and expensive for large scale production runs

new goals (5 months ago)

- support the running of the CRS4 next generation sequencing service (3 Hiseq-2000)
 - From biological sample in the mail to digital data in the cloud
 - automatize anything that would be cost-effective to automatize

Yet an Other full Data cycle Automator

Automation

- Galaxy front-end for biosample submission and analysis request
- All data operations described as galaxy workflows
- Automation layer that chains together workflows and integrates the various system components:
 - Illumina sequencers
 - Galaxy (-> Hadoop cluster)
 - omero.biobank
 - iRODS
- Basic pipelines up and running
 - Flowcell to per-sample fastq datafiles in production

Sample submission front-end

Big data workflow

to summarize: our mantra

omero.biobank knows what things are

iRods knows where things are

galaxy knows how to operate on them

Back to one of our slowness problems

Client side (current) Server side (classic) Server side (map-reduce)

Processing rates

Structured objects file system

- Possible to instruct/delegate computing framework on how computational load should be distributed
- HDF5 natural candidate to impose «scientific data» structure on file system
 - Implementation details
 - using H5FD_SPLIT it is possible to separate data from metadata in two different files
 - In principle possible to have HDF5 on top of HDFS, QFS better?
 - We wrote a minor pytables extension to support H5FD_SPLIT, so we can easily try on HDFS (and later on QFS)
- BTW- For this class of objects, e.g., big SNP arrays, HBASE is not a good solution.

new goals: back to images!

- We are moving toward "pathology" applications support
 - Integration of sequencing + proteomics + digital pathology

THANK YOU FOR YOUR TIME!

