Atlas-Based Bioinformatics

Richard Baldock

MRC Human Genetics Unit
Institute of Genetics and Molecular Medicine
Edinburgh, UK

eMouseAtlas - Development and Gene-Expression

eMouseAtlas - Development and Gene-Expression

eMouseAtlas - Development and Gene-Expression

Sigolène Meilhac Institut Pasteur

APOPTOSIS

Acridine Orange
J. Burns

University of Bristol

eMouseAtlas - Development and Gene-Expression

Sigolène Meilhac Institut Pasteur

APOPTOSIS

Acridine Orange
J. Burns

University of Bristol

eMouseAtlas Framework

eMouseAtlas Framework

- branchial arch
- Dil cavities and their linings
- Be ectoderm
- \square limb
- mesenchyme
- 11 head mesenchyme
- trunk mesenchyme
\square intermediate mesenchyme
- 1. lateral mesenchyme derived from mesoderm
- paraxial mesenchyme
- mesenchyme derived from neural crest unsegm
unsegmented mesenchyme
- Ceptum transversum
- notochord
- organ system

Dardiovascular syste
Bbood

- heart
atrio-ventricular canal
- bulbus cordis
- 11 common atrial chamber - $]$ mesentery - outflow tract - 1 primitive ventricle - sinus venosus venous system
- All nervous svstem

Stage Diagram Stage Criteria

Atlas-Based Infrastructures

eMouseAtlas

$$
\in m a p
$$

eMouseAtlas

eMouseAtlas

EMAGE - current status

EMAGE - current status

Emap

EMAGE Embryo Space

Emap

Paint a region using your cursor O INFO DEMO

Retrieve gene expression betected it in the region.
Retrieve data for both the leff-hand and righthand sides of the embryo. el Retrieve data over a range of stages: \quad TS17 $\quad-0 \quad+0 \quad \%$

Citing these resources Funding information Cuestions and comments Web browser compatbilly
A) All ste content, except where otherwise noted, is licensed under a Creative Commons Attribution License

EMAGE Embryo Space

Emap

EMAGE Embryo Space

Emap

BioAtlas - data mapping

- image collection - no mapping all spatial interpretation left to user
- implicit mapping - data interpreted and annotated with controlled vocabulary or ontology, image requires interpretation but some query and pattern analysis possible "simple"
- explicit mapping, full spatial delineation of information e.g. expression pattern.

Emap

BioAtlas - data mapping

BioAtlas - data mapping

BioAtlas - data mapping

- Manual tie-point alignment (WIzWarp)
- mesh-based constrained distance transform
- interactive
- arbitrary complexity
- Automated fine tuning (ITK/ANTS)
- Editor review
$\underbrace{(3)}_{\epsilon \text { map }}$ 3D Data Mapping -WIzWarp

Thursday, 16 February 2012

Thursday, 16 February 2012

3D Mapping - Wnt signalling pathway

3D Mapping - Wnt signalling pathway

Emap

Wnt1	TS17	10.5dpc	3D View	EMAGE 6132
Wnt2	TS17	10.5dpc	3D View	EMAGE:6134
Wnt3	TS17	10.5dpc	3D View	EMAGE:6138
Wnt3A	TS17	10.5dpe	3D View	EMAGE-6141
Wnt4	TS17	10.5dpc	3D View	EMAGE 6142
Wrt5A	TS17	10.5dpc	3D View	EMAGE:6144
Wnt6	TS17	10.5dpc	3D View	EMAGE-6148
Wnt7A	TS17	10.5dpe	3D View	EMAGE-6150

3D Visualisation

- Applications:
- SectionBrowser, JAtlasViewer
- Format conversion -> a.n.other
- Browser-Based
- canned views \& movies
- Tiled zoom-viewer
- Extended to 3D protocol (IIP3D)
- Multi-layer
- Interactive overlays
- WebGL

OME Project Objectives

To use and extend OMERO to meet mouse atlas and IGMM requirements:

- Embed woolz images
- Sparse reconstruction \& mapping
- large image data
- Annotation overlay and visualisation
-3D mapping - e.g. OPT images
- IGMM imaging - archiving and analysis

Woolz images

єmap

A fast interval processor

G.A. Shippey ${ }^{\text {a }}$, R.J.H. Bayley ${ }^{\text {a }}$, A.S.J. Farrow ${ }^{\text {a }}$, D.R. Rutovitz ${ }^{\text {a }}$ and J.H. Tucker ${ }^{\text {a }}$ ${ }^{\text {a }}$ MRC Clinical and Population Cytogenetics Unit, Edinburgh, U.K.
Received 22 December 1980. Available online 19 May 2003.

Abstract

The advent of high resolution Linear Image Sensors, and high p.r.f. stepping development at the MRC Edinburgh is intended to scan a conventional micros The high pixel data rate (8 MHz peak) easily saturates most computer configur threshold, pixels (i.e. 'intervals') into a set of interval parameters. These interva microprocessors to give object parameters from which the cells can then be c The paper describes the hardware and software architecture, with comments The linkage procedure used to reconstitute contiguous object descriptions is a the order of 1 ms .

Keywords: Interval; Image sensor; Stepping motor; Auto-focus; Metaphase; Cen

[^0]
Woolz images

Emap

A font intaminl munnnennr	
${ }^{\text {a }}$ MRI	Pattern Recognition L
Rece	
	Data structures for image processing in a \mathbf{C} language
Absi	and Unix environment
de	Jim Piper ${ }^{\text {a }}$ and Denis Rutovitz ${ }^{\text {a }}$
Th	${ }^{\text {a }}$ MRC Clinical and Population Cytogenetics Unit, Western General Hospital, Crewe Road,
thr	Edinburgh EH4 2XU, Scotland
mi	Received 14 December 1983; revised 12 July 1984. Available online 19 May 2003.
Th	
Th	Abstract
the	A variety of single-address image, graphic, and image-operator data structures and a library of
Keyw	support subroutines have been implemented in the C programming language. These facilitate efficient and representation-independent procedure implementation, and have been used to construct a set of image processing tools in a Unix environment which make a flexible interactive
Patte Volun	image processing system.
1980	Keywords: Image data; image domain; C language type structure; pointer variable; interactive image processing: shell programming
	$\stackrel{\Delta}{d}$ This work was supported entirely by the UK Medical Research Council.

Woolz images

Emap

Woolz images

єmap

Woolz images

Emap

Woolz Images

- Domain
- Rectanngle based
- Interval based
- 3D planewise domains

Woolz Images

- Domain
- Rectangle based
- Interval based
- 3D planewise domains

Woolz Images

- Domain
- Rectangle based
- Interval based
- 3D planewise domains

Woolz Images

- Domain
- Rectangle based
- Interval based
- 3D planewise domains

Woolz Images

- Domain
- Rectangle based
- Interval based
- 3D planewise domains
- Rectangle based
- Raged and interval based
- Tiled

35
20-25, 27-27, 29-29, ...

Woolz Images

- Domain
- Rectangle based
- Interval based
- 3D planewise domains

- Arbitrary bounding box
- Interval coding - compact
- Fast binary \& morphological operations
- Separation of domain from values enables value data sharing

Woolz Images

- Values
- Rectangle based
- Raged and interval based
- Tiled

Woolz Images

- value types: ubyte short, int, float,
- Values - Value table can be shared by many
- Rect
- Rag base
- Tiled - Iterators to navigate data
- Tiled data can be memory mapped forvoryfact arrocc-minimappodinn cnange

Woolz Images

- value types: ubyte short, int, float,
- Values - Value table can be shared by many
- Rect
- Rag base
- Tiled
- Compact coding without compression
- Iterators to navigate data
- Tiled data can be memory mapped
fnr MArM fact arrecc - minimalnntina cnange

Woolz image objects

- Polylines, boundary lists
- histograms
- meshes - 2D \& 3D
- transforms
- affine
- basis function
- mesh
- conforming mesh

Woolz image objects

- Polylines, boundary lists
- histograms
- meshes - 2D \& 3D
- transforms
- affine
- basis function
- mesh
- conforming mesh

$$
\left(\begin{array}{cccc}
t_{00} & t_{01} & t_{02} & t_{03} \\
t_{10} & t_{11} & t_{12} & t_{13} \\
t_{20} & t_{21} & t_{22} & t_{23} \\
0 & 0 & 0 & t_{33}
\end{array}\right)
$$

Woolz image objects

- Polylines, boundary lists
- histograms
- meshes - 2D \& 3D
- transforms

$$
\Delta u=P_{u}(x, y)+\sum_{i=1}^{i=N} \lambda_{i} b\left(r_{i}\right)
$$

- affine

$$
b_{T P S}(r)=r^{2} \ln \left(r^{2}\right)
$$

- basis function
- mesh
- conforming mesh

$$
\Delta u=u-x
$$

$$
b_{M Q}(r)=\sqrt{r^{2}+\delta^{2}}
$$

$$
b_{I M Q}(r)=\frac{1}{\sqrt{r^{2}+\delta^{2}}}
$$

- Polylines, boundary lists
- histograms
- meshes - 2D \& 3D
- transforms
- affine
- basis function
- mesh
- conforming mesh

Woolz image objects

- Polylines, boundary lists
- histograms
- meshes - 2D \& 3D
- transforms
- affine
- basis function
- mesh
- conforming mesh

Sparse Image Reconstruction \& Mapping

- EurExpress project
- 19.5 K in situ probes, 350 K images
- ~24 images per in situ probe
- ~ 0.5 micron resolution in plane
- 150 micron plane separation
- EmbryoExpress - 20K images
- Allen Brain Atlas - 200K images
- Require automation - Advanced Normalisation Tool (ANTs)
- sparse image, matching mask
- Full 3D affine then non-linear warping.
- Semi-automatic reconstruction
- Automated segmentation
- Manual mapping
- 2D pseudo wholemount
- full 3D in progress

Pseudo Wholemount Mapping to Emap - done

- Semi-automatic reconstruction

Pseudo Wholemount Mapping to Emap - done

Pseudo Wholemount Mapping to Emap - done

єmap
3D Mapping to emap

3D Mapping to emap

3D Mapping to emap

Large Image Data

- Single reconstructions already 30+GB
- New EM embryo data ~0.5TB
- OPT data - small (200MB) but many - 5K
- Typical requirement to browse as sections
- Require arbitrary angle re-sectioning
- BLB - want to browse online using no more that a web-browser

єmap

Tiled Image Servers

[Shawn Mikula, Issac Trotts, James M. Stone, and Edward G. Jones,Internet-Enabled HighResolution Brain Mapping and Virtual Microscopy, Neuroimage, vol 35(1), p. 11, 2007]

[maps.google.com]

Sectioning Parameters

- Angles:
- Pitch, Yaw, Roll
- Position:
- Fixed point (f) \& distance
- Scale
- Tiling depends on orientation \& scale

IIP3D - Extensions

Emap

Command	Purpose	Syntax
WLZ	Specify the Woolz object	WLZ $=$ =path
DST	Specify the distance of the sectioning plane	DST=dis
FXP	Specify the fixed point of the viewing section rotation	FXP=X,Y,Z
FXT	Specify the second fixed point of the viewing section rotation	FXT $=X, Y, Z$
MOD	Specify the projection mode	MOD=mode
PIT	Specify the pitch angle of the sectioning rotation	PIT=angle
PAB	Specify the 3D query point absolute in the object coordinate	PAB=X,Y,Z
PRL	Specify the 2D query point relative in tile or display or tile co-	PRL=T,X,Y
	ordinate	
ROL	Specify the roll angle of the sectioning rotation	ROL=angle
SCL	Specify the scale used in the sectioning transformation	SCL=scale
UPV	Specify the up vector for the UP_IS_UP mode	UPV=X,Y,Z
YAW	Specify the yaw angle of the sectioning rotation	YAW=angle

Table 1: Extended command overview

Object	Purpose
IIP-server	Identify if WLZ-IIP is running
Max-size	The size of the section
Tile-size	The size of a tile
Wlz-true-voxel-size	The voxel size of the object
Wlz-volume	The volume of the object
Wlz-distance-range	The range of the sectioning plane distance
Wlz-sectioning-	The pitch, yaw and roll angles of of the sectioning plane
angles	
Wlz-3d-bounding-	The first and last plane, line and column number of the object
box	
Wlz-coordinate-3D	The 3D coordinates defined in 2D by the PRL command
Wlz-grey-value	The grey or RGB value of a point specified either the PRL or the PAB
	commands

Table 2: Extended object overview

IIP3D

Emap

Dundee 2012
26

IIP3D Web-App Architecture

Figure 4: Architecture of IIP3D server using a proxy server. The web server passes the user requests to the proxy, which forwards them to individual IIP servers. These servers have direct access to the Woolz Object and return the requested data. The numbered lines show the order of the requests (continuous lines) and the replies (dotted lines).

IIP3D Web-App Architecture

Figure 4: Architecture of IIP3D server using a proxy server. The web server passes the user requests to the proxy, which forwards them to individual IIP servers. These servers have direct access to the Woolz Object and return the requested data. The numbered lines show the order of the requests (continuous lines) and the replies (dotted lines).

Performance

Performance

IIP3D Clients

- Javascript
- Ajax
- MVC design, uses MooTools \& Yahoo Widgets
- Multi-section at high resolution
- Volume overlays
- Anatomy \& gene-expression overlays
- Controls
- viewing angles - virtual sections
- zoom
- distance, fixed point
- section locator \& view angle feedback
- distance measurement, query by image value

Annotation Overlay \& Visualisation

- Atlas models include ontology and domains image regions for anatomical terms. Typically exclusive
- Gene-expression data, open ended, multiple overlapping patterns

Layers, Overlays \& Indexed Objects

- Multiple layers via html image overlay including opacity
- currently layers constrained to identical domains
- Regional overlays using an indexed object
- currently using "compound object" - regions can overlap
- TBD - standard indexed volume - regions spatially exclusive

Image Processing IIP3D extensions

Emap

Operator	Description
diff(exp,exp)	The difference between the two given domains.
dilation(exp,radius)	The dilation of the domain by radius voxels.
domain (exp)	The domain of an object.
erosion(exp,radius)	The erosion of the domain by radius voxels.
intersect (exp list)	The intersection of the domains in the given lists.
threshold (exp,value,comparison)	Creates an object where the image values satisfy the given value and comparison. Here the
	value is floating point and valid comparisons are
	lt (less than), le (less than or equal), eq (equal), ge (greater than or equal) and gt) (greater than).
union(exp list)	The union of the domains in the given lists.

Table 4: Descriptions of morphological operators

exp list	:=	(exp\idx list) (,exp list)			
idx list	:=	(idd \mid (idx-) \| $(i d x-i d x) \mid(-i d x))(, i d x$ list $)$			
exp	:=	$i d x) \mid$			
		diff($\exp , \exp)$ ।			
		dilation(exp,uint) ।			
		domain(exp) \|			
		erosion(exp,uint) \|			
		intersect (exp list, exp list) ।			
		threshold (exp,val, cmp)			
		union(exp list, exp list) \|			
$i d x$:=	[0-9]+			
uint	:=	[1-9] [0-9]*			
val	:=	$[-+]$? [0-9] *. ? [0-9] + ([eE] [-+] ? [0-9]+)?			
cmp	:=	(lt) \| (le)	(eq)	(ge)	(gt)

Table 3: Syntax for morphological expressions.

IIP3D Examples

IIP3D Examples

IIP3D Examples

IIP3D Examples

Emap

- 3D Model (EMA:80): TS23(14.5 dpc)

WHS Mouse

- IIP3D viewer extension to 3D visualisation
- Use X3Dom - Javascript binding to X3D
- navigation feedback
- Anatomy visualisation
- see demo
- Extend to 4D

3D mapping - WIzWarp

- Allows placement of landmarks (points of equivalence) on source and target on volume renders instead of isosurfaces
- On-the-fly feedback of warping progress
- Uses constrained distance transform (CDT) in warping
- Woolz, Qt, Coin3D(+SIMVoleon)
- Linux, OS X, Windoes
- Open Source (Free!)

3D mapping - WIzWarp

Wnt1

3D mapping - WIzWarp

Wnt1

Lineage \& the Brain

- Embryo development 7-5-8.5 dpc
- 11-fold growth of ectoderm cell layer
- complex folding
- lineage clones via HRP cell labelling (iontophoresis)
- pattern recognition very difficult
- conformal transform of ectodermal surface to "flat-map"

Lineage \& the Brain

A Camus, K Lawson, W Hill et al Development 2011

Lineage \& the Brain

A Camus, K Lawson, W Hill et al Development 2011

eMouseAtlas

Human
Genetics
Unit

HERIOT 5 WATT

Heriot Watt University
Albert Burger

(2x) Newcastle

5 University
Institute of Human Genetics, Newcastle University
Susan Lindsay
Janet Kerwin

Other
Jonathan Bard
Matt Kaufman

[^0]: Pattern Recognition
 Volume 14, Issues 1-6, 1981, Pages 345-356
 1980 Conference on Pattern Recognition

