
THE OPEN MICROSCOPY ENVIRONMENT MATLAB HANDLER:
COMBINING A BIOINFORMATICS DATA & IMAGE REPOSITORY WITH A

QUANTITATIVE ANALYSIS ENVIRONMENT

Tom J. Macura1, Josiah N. Johnston1, Douglas A. Creager2, Peter K. Sorger3, and Ilya G. Goldberg1

1Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on
Aging, National Institutes of Health, 333 Cassell Drive, Baltimore MD 21224, USA

{tmacur1, siah, igg}@nih.gov; 2Oxford University Computing Laboratory, University of Oxford, Oxford,
UK, douglas.creager@comlab.ox.ac.uk; 3Dept. Of Biology, Massachusetts Institute of Technology,

Cambridge, MA psorger@mit.edu

ABSTRACT

High-throughput scoring of image-based biological assays
heavily depends on the extraction of quantitative numerical
information from microscopy images. This paper describes how
the Open Microscopy Environment (OME)’s MATLAB
Handler combines a bioinformatics data and image repository –
OME – with a numerical analysis environment – MATLAB. An
OME/MATLAB coupling leverages the wealth of intellectual
property invested in MATLAB algorithm implementations by
making them accessible to OME managed data, and takes
advantage of OME’s features for organized analysis: workflow
manager, provenance recording, result reuse, and distributed
analysis. The MATLAB Handler is a general method for
incorporating legacy MATLAB code with the OME analysis
system. We used it to implement a complex image analysis
workflow for calculating >800 numerical image descriptors as
part of a general image classification technique.

1. INTRODUCTION

Novel bio-informatics technologies are necessarily being
developed to support the new microscopy approach based on
high-content image-based cellular screens (commonly referred
to as High Content Screens, or HCS).

In HCS, fluorescence markers are monitored to observe the
effects of compounds or genetic manipulation on cellular
activities or morphology. Fluorescence markers monitor changes
in a tagged protein’s distribution and intensity. Examining subtle
changes requires high-resolution imaging and therefore
generates high information content. These screens are high-
throughput because a whole class of compounds or genes must
be exhaustively investigated in a systematic manner through tens
of thousands of samples.

Key to extracting information from HCS are automated
image processing and analysis techniques. These techniques
offer the promise of (1) automation, (2) objectivity and
reproducibility, and (3) potentially higher sensitivity than expert
human observers.

1.1. Automated Image Classification

Our group has developed a computer-driven image classification
system that can assign images into groups based on rules
automatically inferred from a user-defined image training set.
[1] In this classification system, each image is decomposed into
a signature vector of continuous values (over 800) using a bank
of filters. We use a large varied signature set because different
HCS applications have different image particularities. After
extraction, the signature vectors are treated with an entropy-
based discretization method and used to train a Naïve-Bayesian
network via the forward-selective method. During training, the
classifier automatically determines which image descriptors are
most relevant to the immediate classification problem. The
resulting trained Bayesian network can classify previously
unencountered images.

We are validating the efficacy of our classification
approach using various microscopy and radiology image
sources. We have already successfully applied our approach to
the prediction of C. elegans muscle age, identification of sub-
cellular organelles, and S2/RNAi screens for absence of
centromeres, binucleate phenotype, loss of filopodia, etc. [1]

A typical classification problem involves four classes, 150
images per class (for training and validation) and generates 800
features per image. Thus, training the image classifier yields
480k unique numbers. Once training and validation is complete,
the classifier is applied to a screen which may consist of 50k
images, with perhaps a dozen unique numbers for each image
selected for their classification power. In this way, well over a
million individual values are associated with a single
experiment.

1.2. The Open Microscopy Environment (OME)

The Open Microscopy Environment project is both a set of
information and interchange standards for microscopy images
[2] and an open-source software suite for managing and
analyzing images and image information. [3] OME is being
developed by an international consortium of academic groups
and is intended to become a general-use informatics framework
for biological research involving microscopy and imaging.

OME is designed as a client-server architecture where
images and data are stored on a centralized OME server. Users
access OME data with either a lightweight web-based interface

or a Java client. The OME server is composed of the OME
Image Server (OMEIS) and the OME Data Server (OMEDS).
OMEIS is an interface to a repository where image pixels,
original image files, and other large binary objects are stored [6].
OMEDS stores all meta-data and derived data about the images
in a database. The data-server is made up of a PostgreSQL
database with a dynamically generated schema along with a
collection of Perl classes providing the middle-ware for
accessing the data in a structured object-oriented manner.

OME supports a wide range of microscopy and radiology
multi-dimensional image formats. Image meta-data is
automatically extracted from these formats and automatically
entered into the OME database, but can also be imported into
OME using Excel® or tab-delimited text files. These image and
meta-data files serve as the primary entry point for data into
OME.

Derived data is produced by applying algorithms to initial
data. Each datum is a logically distinct object, called an
attribute, and is an instance of a semantic type. Each semantic
type defines several fields, or semantic elements (SE), which
specify the simple values that make up the data of the type.
OME’s underlying data model is highly flexible. Semantic
types, which are essentially ontological terms, are defined in
XML and imported into a live OME system, thus expanding
OME’s dynamically generated schema.

All data in OME is stored in these attributes and the
analysis module is the sole mechanism by which new attributes
are created. Analysis modules usually represent computational
algorithms, though they are also used to represent user input or
parsing of external files. The inputs and outputs of modules are
semantically typed, and thus modules serve as declared
transformations between sets of semantically typed attributes.

The OME Analysis Engine (AE) delegates the
implementation specific logic about executing an analysis
module’s algorithm and managing I/O to handlers e.g.
MATLAB Handler. This makes it easier to add support for
modules implemented in other programming languages.

Analysis modules can be connected, via their inputs and
outputs, to form actionable workflow plans called analysis
chains. These chains are constructed using the ChainBuilder
interactive user interface [2] or by directly writing XML [4].
When the AE executes analysis chains against a dataset of
images, it does provenance recording [5], reuses results of
modules it has determined have been executed before, and
distributes analysis module execution across multiple CPUs on
the network.

2. OME / MATLAB COUPLING

MATLAB is a high-level, interactive programming environment
for numerical computation. With more than 1000 built-in
mathematical, statistical, and engineering functions, including
statistical, image analysis, and machine learning tools,
MATLAB is especially useful for quantitative bioinformatics.

Our lab uses MATLAB: (1) as an interactive environment
for data analysis and visualization leading to algorithm
development; and (2) as a programming language in which we
can implement numerical analysis algorithms much faster than
with traditional programming languages such as C, C++, or
Fortran. We designed the OME/MATLAB coupling to supporti
both usage methods: (1) we wrote a MATLAB binding for the
OMEIS client library that makes pixels stored in OMEIS
accessible in MATLAB like regular image files; and (2) we

wrote a MATLAB handler for the AE that allows algorithms,
implemented in MATLAB and wrapped in a simple XML
syntax, to be executed as OME Analysis Modules by the AE.

3. OMEIS-LOCAL IMAGE FORMAT

The OME Image Server (OMEIS) is built to store millions of
images and allow efficient access to them for reading and
writing over a universal interface. [6] It has features such as
scheduled compression and purging, transparent inflation of
compressed files and pixels, and transparent recovery of purged
pixels from their original files. OMEIS is usually run on a high-
performance computer with a high-capacity disk array and
optimized bandwidth to the network. Our labs routinely use it to
store thousands of images comprising hundreds of gigabytes.

It is more efficient and convenient to access OMEIS pixels
directly in the MATLAB environment than to access them
through temporary file-system intermediaries.

We defined an OMEIS-Local file-format for managing this
interaction. OMEIS-Local files stored on the local file system
contain references to pixels managed by OMEIS. These files,
which must be constructed manually or programmatically,
contain a magic string identifying them as OMEIS-Local files,
the URL for a particular OMEIS, and a unique identifier for the
pixels object on the specified OMEIS.

Since the OMEIS-Local file-format is registered in
MATLAB, it is treated as a natively supported image format by
the standard MATLAB image I/O functions. The appropriate
pixels are seamlessly retrieved via http from the server and
placed into the MATLAB workspace memory.

OMEIS-Local stubs allow MATLAB functions (including
compiled proprietary MEX files) that use image filenames as
input parameters to work without alteration with pixels managed
by OMEIS. These benefits come at the cost that users must write
the stub files. Alternatively, we provide GetPixels/SetPixels

Figure 1: An XML wrapper allows a MATLAB
implemented algorithm to be executed by the OME
analysis engine via the MATLAB Handler.

<AnalysisModule
 ModuleName="Haralick Features 2D"
 ModuleType=
 "OME::Analysis::Handlers::MatlabHandler"
 ProgramID="HaralickFeaturesRI"
 ID="urn:lsid:openmicroscopy.org:Module:7704">
 <Description> ... </Description>
 <Declaration>
 <FormalInput Name="Pixels Plane Slice"

SemanticTypeName="PixelsPlaneSlice" Count="!"/>
 <FormalInput Name="Texture Distance"

SemanticTypeName="HaralickTextureDistance" Count="?"/>

 <FormalOutput Name="Angular Second Moment"

SemanticTypeName="CoOcMat_ASM" Count="!"/>
 <FormalOutput Name="Contrast"

SemanticTypeName="CoOcMat_Contrast" Count="!"/>
 ...
 </Declaration>

 <ExecutionInstructions ExecutionGranularity="I" ...>
 <FunctionInputs>
 <Input><PixelsArray FormalInput="Pixels Plane Slice"

ConvertToDatatype="uint8"/></Input>
 <Input><Scalar InputLocation="Texture Distance.Distance"/></Input>
 </FunctionInputs>
 <FunctionOutputs>
 <Output><Vector

DecodeWith="Haralick_Avg_and_Range_Output_Vector"/></Output>
 </FunctionOutputs>

 <VectorDecoder ID="Haralick_Avg_and_Range_Output_Vector">
 <Element Index="1" OutputLocation="Angular Second

Moment.ASM_avg"/>
 <Element Index="2" OutputLocation="Contrast.Contrast_avg"/>
 ...
 </VectorDecoder>
 </ExecutionInstructions>
 </AnalysisModule>

(A)

(B)

(C)

(D)

(E)

MATLAB functions that load pixels to/from OMEIS based on
input parameters. These function are easier to use but don’t have
legacy support.

4. MATLAB HANDLER

A wrapper for a MATLAB algorithm is a set of XML elements
that define, according to the Analysis Module Library schemata
[7], how the MATLAB algorithm ought to be executed by the
AE:
• ModuleName: serves mostly for user benefit.
• Category: Modules belong to a hierarchical structure of

categories. This is a simple organization scheme that aids
users by grouping modules by similarity.

• ModuleType: refers to the Perl class that implements the
handler for this module.

• ProgramID: refers to the name of the MATLAB function
that implements the module.

• ID: a globally unique Life Science Identifier (LSID) [8]
• Description: is free-text that informs potential users as to the

module’s algorithm and implementation.
• Declaration: defines the names, semantic types, and arity of a

module's inputs and outputs.
• Execution Instructions: are instructions that describe how

inputs and outputs to the algorithm implementation
correspond to OME semantic types. These are interpreted by
an AE handler and are therefore handler specific.

Since MATLAB analysis modules have access to all data
that is managed by OME, there must be an established
equivalence between MATLAB data-types and OME data-types.
This is summarized in online documentation. [9]

The MATLAB handler does strong data-type checking for
all MATLAB inputs and outputs. Mismatches between the class
of the MATLAB variable and the semantic element data-type
defined in XML are considered errors. Explicit type-casting can
be used in all input/output execution instructions via the
ConvertToDataType XML tag. This tag specifies the
MATLAB class the module’s input/output should be converted
to in the MATLAB environment. An example of explicit
casting is illustrated in Figure 1c.

The <ExecutionInstructions> element has two parts:
<FunctionInputs> and <FunctionOutputs> (Figure 1c and
1d). These blocks are a set of <Input>/<Output> elements
that describe each of the function's inputs/outputs and can either
be a scalar, a pixels array, or a vector. Their order in XML
corresponds to the order they will be passed/retrieved from the
function. The MATLAB handler doesn’t yet support MATLAB
functions that return a variable number of outputs.

4.1. Scalar Inputs and Outputs
Scalar input definitions associate values of individual semantic
elements - or constants - with inputs to MATLAB functions.
Output definitions indicate how MATLAB results will be stored
in OME.
• <Input><Scalar
InputLocation="FormalInput.SE"/></Input>: the
handler passes the value of the formal input's semantic
element as an input into the function.

• <Output><Scalar
OutputLocation="FormalOutput.SE"/></Output>:

the function's output value is stored as a new attribute's
semantic element.

• <Input><ConstantScalar Value="3.14"/>

</Input>: is a mechanism by which an input to the
MATLAB function can be hard-coded in XML.

4.2. Pixels Inputs and Outputs

The MATLAB handler makes it easy to take pixels from
OMEIS and pass them as a 5D XYZCT array into a MATLAB
function.
• <Input><PixelsArray
FormalInput="FormalInputName"/></Input>

• <Output><PixelsArray
FormalOutput="FormalOutputName"/></Output>

4.3. Vector Outputs

VectorDecoder syntax allows us to use a vector output from
MATLAB to define OME attributes. We have not encountered a
use case that requires a complementary VectorEncoder.

In the <FormalOutput> block, <Output><Vector

DecodeWith="VectorName"/></Output> associates an
XML VectorDecoder identified by DecodeWith with a
particular function output. A VectorDecoder maps the vector's
components to new attributes’ semantic elements using a series
of <Element Index="i"

OutputLocation="FormalOutput.SE"/> tags. Figure 1e is
an example of a VectorDecoder.

4.4. Implementation

Mathworks® provides the MATLAB Engine and MX Array
Manipulation libraries as an external interface by which
MATLAB can be called from within C programs. We used the
Perl XS interface to define Perl bindings for the Mathworks® C-
libraries. It is through these bindings that the MATLAB
Handler, which is a Perl class, executes analysis modules
implemented in MATLAB.

5. VALIDATION & EFFICIENCY

Executing an analysis chain of OME MATLAB modules must
produce exactly the same results as running it natively in the

Figure 2: This OME analysis chain is a workflow of 12
MATLAB analysis modules that computes an image’s
signatures.

MATLAB environment. We tested the OMEIS & OMEDS
connections independently and also did a comprehensive test by
executing analysis chains with known results.

OMEIS enforces, through the use of SHA1 digests, a
uniqueness constraint on all pixels. We exploited this constraint
to test the OMEIS –MATLAB connection. We wrote a
MATLAB script that would connect with OMEIS, download
each pixels set to serve as a template, and replicate this template
as a new pixels set. The replication was designed to use the
maximum number of OMEIS MATLAB functions. When we
ran this script against our local OMEIS installation (10,000
images, 100+ GB) we observed that the PixelsIDs returned
were the same as the input PixelIDs, indicating that the pixels
SHA1 digests were always identical.

The underlying PostgressSQL database stores real and
double precision according to the IEEE Standard 754 for
Binary Floating-Point Arithmetic. MATLAB, on the other
hand, uses denormal numbers to store very small numbers at
lower precision. This arcane point implies that for the few
applications that use very small floating-point numbers,
OME and MATLAB results differ.

We wrote a “glue” MATLAB script to mimic an OME
analysis chain by connecting individual MATLAB modules.
We compared the results of this script, where intermediate
results are always kept within MATLAB, to the equivalent
chain computed with the OME analysis engine, where
intermediate results pass through OMEIS and the database.
All 800 results varied by less than 10-1 2.

The overhead due to OME managed execution depends on
the number of MATLAB modules and how many
inputs/outputs they each have. Although it is probably better
from a data-modeling and modular design perspective to have
many smaller modules, it increases overhead in an OME-
based implementation. Currently 75% of the total real-world
execution time is spent within the MATLAB modules and the
other 25% is OME overhead. We measured this by executing
the signature chain (Figure 2) on a dataset containing 20 16-bit
200x200 images. It ran 6 minutes per image.

6. DISCUSSION

The MATLAB Handler has been developed as a solution to a
specific problem: porting our automated image classification
system, implemented in MATLAB, into an OME chain of
analysis modules that could be executed by the analysis engine.

Designing the execution instructions has been a
compromise between the simplicity of the XML syntax and
generality. Syntax complexity is also highly correlated with the
cost of developing the handler implementation. There are
innumerable valid use-cases for conversion of inputs and outputs
from MATLAB functions into OME attributes.

Modularizing the image classifier resulted in 12 diverse
MATLAB analysis modules. We found that there are a handful
of common patterns for specifying inputs and outputs to
MATLAB functions and that we can support most MATLAB
functions in OME without modification: approximately 20% of
MATLAB functions will require MATLAB wrappers that do
additional data-conversion. Alternatively, a Perl class based off
of the MATLAB Handler can be written to implement any
module-specific interface.

Although motivated by a specific application, the
MATLAB Handler is a general method for integrating analysis
routines implemented in MATLAB with biological data stored
in OME. Our use-case validates that OME managed analysis
execution doesn’t corrupt data and that execution instructions
are sufficiently expressive to wrap around real-world image
analysis routines. We found that integration of a module has a
shallow learning curve.

Other projects, such as the microarray analysis platform
GenePattern, also have integrated MATLAB with a data store.
[10] Our MATLAB handler is markedly different. Firstly, our
approach is very general–the required interface is specified per
MATLAB module in XML—so most legacy applications are
supported without alteration. Secondly, since the handler is
based on the OME extensible data model, it is not limited to
genomic/proteomic data but supports any textual, numerical, and
visual data.

Planned future work involves adding support for accessing
OME meta-data in the MATLAB interactive environment and
further optimizations to lower OME analysis engine and
MATLAB Handler over-head.

8. REFERENCES

[1] N. Orlov, J. Johnston, C. Wolkow, and I.G. Goldberg,
“Image Similarities in Classification problems for Microscopy
Applications” Submitted to 2006 IEE International Symposium
on Biomedical Imaging.

[2] I.G. Goldberg, et al., “The Open Microscopy Environment
(OME) Data Model and XML File: Open Tools for Informatics
and Quantitative Analysis in Biological Imaging.” Genome
Biology, Biomed Central, London, pp. 6:R47, 2005.

[3] J. Swedlow, et al.,“Informatics and quantitative analysis in
biological imaging.” Science 300, 100 –102, 2003,

[4] http://www.openmicroscopy.org/api/xml/

[5] R. Bose and J. Frew, “Lineage Retrieval for Scientific Data
Processing: A Survey.” ACM Computing Surveys, 37(1), 1-28,
2005

[6] http://www.openmicroscopy.org/api/omeis/

[7]
http://www.openmicroscopy.org/XMLschemas/AnalysisModule
/latest/AnalysisModule_xsd/

[8] S. Martin, M.M. Hohman, T. Liefeld, “The Impact of Life
Science Identifier on informatics data.” Drug Discovery Today,
10(22):1566-72, 2005

[9]
http://www.openmicroscopy.org/api/xml/AML/MATLAB.html

[10] T. Liefeld, et al., “GeneCruiser: a web service for the
annotation of microarray data”, Bioinformatics, 21(18): 3681-2,
2005

