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ABSTRACT 
 
High-throughput scoring of image-based biological assays 
heavily depends on the extraction of quantitative numerical 
information from microscopy images. This paper describes how 
the Open Microscopy Environment (OME)’s MATLAB  
Handler  combines a bioinformatics data and image repository – 
OME – with a numerical analysis environment – MATLAB. An 
OME/MATLAB coupling leverages the wealth of intellectual 
property invested in MATLAB algorithm implementations by 
making them accessible to OME managed data, and takes 
advantage of OME’s features for organized analysis: workflow 
manager, provenance recording, result reuse, and distributed 
analysis.  The MATLAB Handler is a general method for 
incorporating legacy MATLAB code with the OME analysis 
system. We used it to implement a complex image analysis 
workflow for calculating >800 numerical image descriptors as 
part of a general image classification technique. 
 
 
 
 

1. INTRODUCTION  
 
Novel bio-informatics technologies are necessarily being 
developed to support the new microscopy approach based on 
high-content image-based cellular screens (commonly referred 
to as High Content Screens, or HCS). 

In HCS, fluorescence markers are monitored to observe the 
effects of compounds or genetic manipulation on cellular 
activities or morphology. Fluorescence markers monitor changes 
in a tagged protein’s distribution and intensity. Examining subtle 
changes requires high-resolution imaging and therefore 
generates high information content.  These screens are high-
throughput because a whole class of compounds or genes must 
be exhaustively investigated in a systematic manner through tens 
of thousands of samples. 

Key to extracting information from HCS are automated 
image processing and analysis techniques. These techniques 
offer the promise of (1) automation, (2) objectivity and 
reproducibility, and (3) potentially higher sensitivity than expert 
human observers. 

 
 

1.1. Automated Image Classification 
 
Our group has developed a computer-driven image classification 
system that can assign images into groups based on rules 
automatically inferred from a user-defined image training set. 
[1] In this classification system, each image is decomposed into 
a signature vector of continuous values (over 800) using a bank 
of filters. We use a large varied signature set because different 
HCS applications have different image particularities. After 
extraction, the signature vectors are treated with an entropy-
based discretization method and used to train a Naïve-Bayesian 
network via the forward-selective method. During training, the 
classifier automatically determines which image descriptors are 
most relevant to the immediate classification problem. The 
resulting trained Bayesian network can classify previously 
unencountered images. 

We are validating the efficacy of our classification 
approach using various microscopy and radiology image 
sources. We have already successfully applied our approach to 
the prediction of C. elegans muscle age, identification of sub-
cellular organelles, and S2/RNAi screens for absence of 
centromeres, binucleate phenotype, loss of filopodia, etc. [1] 

A typical classification problem involves four classes, 150 
images per class (for training and validation) and generates 800 
features per image. Thus, training the image classifier yields 
480k unique numbers.  Once training and validation is complete, 
the classifier is applied to a screen which may consist of 50k 
images, with perhaps a dozen unique numbers for each image 
selected for their classification power.  In this way, well over a 
million individual values are associated with a single 
experiment. 
 
1.2. The Open Microscopy Environment  (OME) 
 
The Open Microscopy Environment project is both a set of 
information and interchange standards for microscopy images 
[2] and an open-source software suite for managing and 
analyzing images and image information. [3] OME is being 
developed by an international consortium of academic groups 
and is intended to become a general-use informatics framework 
for biological research involving microscopy and imaging. 

OME is designed as a client-server architecture where 
images and data are stored on a centralized OME server. Users 
access OME data with either a lightweight web-based interface 



or a Java client. The OME server is composed of the OME 
Image Server (OMEIS) and the OME Data Server (OMEDS). 
OMEIS is an interface to a repository where image pixels, 
original image files, and other large binary objects are stored [6]. 
OMEDS stores all meta-data and derived data about the images 
in a database. The data-server is made up of a PostgreSQL 
database with a dynamically generated schema along with a 
collection of Perl classes providing the middle-ware for 
accessing the data in a structured object-oriented manner. 

OME supports a wide range of microscopy and radiology 
multi-dimensional image formats. Image meta-data is 
automatically extracted from these formats and automatically 
entered into the OME database, but can also be imported into 
OME using Excel® or tab-delimited text files.  These image and 
meta-data files serve as the primary entry point for data into 
OME. 

Derived data is produced by applying algorithms to initial 
data. Each datum is a logically distinct object, called an 
attribute, and is an instance of a semantic type. Each semantic 
type defines several fields, or semantic elements (SE), which 
specify the simple values that make up the data of the type. 
OME’s underlying data model is highly flexible. Semantic 
types, which are essentially ontological terms, are defined in 
XML and imported into a live OME system, thus expanding 
OME’s dynamically generated schema. 

All data in OME is stored in these attributes and the 
analysis module is the sole mechanism by which new attributes 
are created. Analysis modules usually represent computational 
algorithms, though they are also used to represent user input or 
parsing of external files. The inputs and outputs of modules are 
semantically typed, and thus modules serve as declared 
transformations between sets of semantically typed attributes. 

The OME Analysis Engine (AE) delegates the 
implementation specific logic about executing an analysis 
module’s algorithm and managing I/O to handlers e.g. 
MATLAB Handler. This makes it easier to add support for 
modules implemented in other programming languages. 

Analysis modules can be connected, via their inputs and 
outputs, to form actionable workflow plans called analysis 
chains. These chains are constructed using the ChainBuilder 
interactive user interface [2] or by directly writing XML [4]. 
When the AE executes analysis chains against a dataset of 
images, it does provenance recording [5], reuses results of 
modules it has determined have been executed before, and 
distributes analysis module execution across multiple CPUs on 
the network. 

2. OME / MATLAB COUPLING 
 

MATLAB is a high-level, interactive programming environment 
for numerical computation. With more than 1000 built-in 
mathematical, statistical, and engineering functions, including 
statistical, image analysis, and machine learning tools, 
MATLAB is especially useful for quantitative bioinformatics. 

Our lab uses MATLAB: (1) as an interactive environment 
for data analysis and visualization leading to algorithm 
development; and (2) as a programming language in which we 
can implement numerical analysis algorithms much faster than 
with traditional programming languages such as C, C++, or 
Fortran. We designed the OME/MATLAB coupling to supporti 
both usage methods: (1) we wrote a MATLAB binding for the 
OMEIS client library that makes pixels stored in OMEIS 
accessible in MATLAB like regular image files; and (2) we 

wrote a MATLAB handler for the AE that allows algorithms, 
implemented in MATLAB and wrapped in a simple XML 
syntax, to be executed as OME Analysis Modules by the AE. 

 
3. OMEIS-LOCAL IMAGE FORMAT 

 
The OME Image Server (OMEIS) is built to store millions of 
images and allow efficient access to them for reading and 
writing over a universal interface. [6] It has features such as 
scheduled compression and purging, transparent inflation of 
compressed files and pixels, and transparent recovery of purged 
pixels from their original files.  OMEIS is usually run on a high-
performance computer with a high-capacity disk array and 
optimized bandwidth to the network. Our labs routinely use it to 
store thousands of images comprising hundreds of gigabytes. 

It is more efficient and convenient to access OMEIS pixels 
directly in the MATLAB environment than to access them 
through temporary file-system intermediaries. 

We defined an OMEIS-Local file-format for managing this 
interaction.  OMEIS-Local files stored on the local file system 
contain references to pixels managed by OMEIS. These files, 
which must be constructed manually or programmatically, 
contain a magic string identifying them as OMEIS-Local files, 
the URL for a particular OMEIS, and a unique identifier for the 
pixels object on the specified OMEIS. 

Since the OMEIS-Local file-format is registered in 
MATLAB, it is treated as a natively supported image format by 
the standard MATLAB image I/O functions. The appropriate 
pixels are seamlessly retrieved via http from the server and 
placed into the MATLAB workspace memory. 

OMEIS-Local stubs allow MATLAB functions (including 
compiled proprietary MEX files) that use image filenames as 
input parameters to work without alteration with pixels managed 
by OMEIS. These benefits come at the cost that users must write 
the stub files. Alternatively, we provide GetPixels/SetPixels 

Figure 1:  An XML wrapper allows a MATLAB 
implemented algorithm to be executed by the OME 
analysis engine via the MATLAB Handler. 

<AnalysisModule 
   ModuleName="Haralick Features 2D" 
   ModuleType= 
    "OME::Analysis::Handlers::MatlabHandler" 
   ProgramID="HaralickFeaturesRI" 
   ID="urn:lsid:openmicroscopy.org:Module:7704"> 
  <Description> ... </Description> 
  <Declaration> 
    <FormalInput  Name="Pixels Plane Slice" 

SemanticTypeName="PixelsPlaneSlice"         Count="!"/> 
    <FormalInput  Name="Texture Distance" 

SemanticTypeName="HaralickTextureDistance"  Count="?"/> 
 
    <FormalOutput Name="Angular Second Moment" 

SemanticTypeName="CoOcMat_ASM"      Count="!"/> 
    <FormalOutput Name="Contrast" 

SemanticTypeName="CoOcMat_Contrast" Count="!"/> 
        ... 
  </Declaration> 
 
  <ExecutionInstructions ExecutionGranularity="I" ...> 
    <FunctionInputs> 
      <Input><PixelsArray FormalInput="Pixels Plane Slice" 

ConvertToDatatype="uint8"/></Input> 
      <Input><Scalar InputLocation="Texture Distance.Distance"/></Input> 
    </FunctionInputs> 
    <FunctionOutputs> 
      <Output><Vector 

DecodeWith="Haralick_Avg_and_Range_Output_Vector"/></Output> 
    </FunctionOutputs> 
 
    <VectorDecoder ID="Haralick_Avg_and_Range_Output_Vector"> 
      <Element Index="1"  OutputLocation="Angular Second 

Moment.ASM_avg"/> 
      <Element Index="2"  OutputLocation="Contrast.Contrast_avg"/> 
          ... 
    </VectorDecoder> 
   </ExecutionInstructions> 
 </AnalysisModule> 

(A) 

(B) 

(C) 

(D) 

(E) 



MATLAB functions that load pixels to/from OMEIS based on 
input parameters. These function are easier to use but don’t have 
legacy support. 

 
4. MATLAB HANDLER 

 
A wrapper for a MATLAB algorithm is a set of XML elements 
that define, according to the Analysis Module Library schemata 
[7], how the MATLAB algorithm ought to be executed by the 
AE: 
• ModuleName: serves mostly for user benefit.  
• Category: Modules belong to a hierarchical structure of 

categories. This is a simple organization scheme that aids 
users by grouping modules by similarity. 

• ModuleType: refers to the Perl class that implements the 
handler for this module.  

• ProgramID: refers to the name of the MATLAB function  
that implements the module. 

• ID:  a globally unique Life Science Identifier (LSID)  [8] 
• Description: is free-text that informs potential users as to the 

module’s algorithm and implementation. 
• Declaration: defines the names, semantic types, and arity of a  

module's inputs and outputs. 
• Execution Instructions:  are instructions that describe how 

inputs and outputs to the algorithm implementation 
correspond to OME semantic types. These are interpreted by 
an AE handler and are therefore handler specific. 

Since MATLAB analysis modules have access to all data 
that is managed by OME, there must be an established 
equivalence between MATLAB data-types and OME data-types. 
This is summarized in online documentation. [9]  

The MATLAB handler does strong data-type checking for 
all MATLAB inputs and outputs. Mismatches between the class 
of the MATLAB variable and the semantic element data-type 
defined in XML are considered errors. Explicit type-casting can 
be used in all input/output execution instructions via the 
ConvertToDataType XML tag. This tag specifies the 
MATLAB class the module’s input/output  should be converted 
to in the MATLAB  environment. An example of explicit 
casting is illustrated in Figure 1c.  

The <ExecutionInstructions> element has two parts:  
<FunctionInputs> and <FunctionOutputs> (Figure 1c and 
1d).  These blocks are a set of <Input>/<Output> elements 
that describe each of the function's inputs/outputs and can either 
be a scalar, a pixels array, or a vector. Their order in XML 
corresponds to the order they will be passed/retrieved from the  
function. The MATLAB handler doesn’t yet support MATLAB 
functions that return a variable number of outputs.  
 
4.1. Scalar Inputs and Outputs 
Scalar input definitions associate values of individual semantic 
elements - or constants - with inputs to MATLAB functions. 
Output definitions indicate how MATLAB results will be stored 
in OME. 
• <Input><Scalar 
InputLocation="FormalInput.SE"/></Input>:  the 
handler passes the value of the formal input's semantic 
element as an input into the function. 

• <Output><Scalar 
OutputLocation="FormalOutput.SE"/></Output>: 

the function's output value is stored as a new attribute's 
semantic element. 

• <Input><ConstantScalar Value="3.14"/> 

</Input>: is a mechanism by which an input to the 
MATLAB function can be hard-coded in XML. 

 
4.2. Pixels Inputs and Outputs 
 
The MATLAB handler makes it easy to take pixels from 
OMEIS and pass them as a 5D XYZCT array into a MATLAB 
function.  
• <Input><PixelsArray 
FormalInput="FormalInputName"/></Input> 

• <Output><PixelsArray 
FormalOutput="FormalOutputName"/></Output> 

 
4.3. Vector Outputs 
 
VectorDecoder syntax allows us to use a vector output from 
MATLAB to define OME attributes. We have not encountered a 
use case that requires a complementary VectorEncoder. 

In the <FormalOutput> block, <Output><Vector 

DecodeWith="VectorName"/></Output> associates an 
XML VectorDecoder identified by DecodeWith with a 
particular function output. A VectorDecoder maps the vector's  
components to new attributes’ semantic elements using a series 
of <Element Index="i" 

OutputLocation="FormalOutput.SE"/> tags. Figure 1e is 
an example of a VectorDecoder. 

 
4.4. Implementation 

 
Mathworks® provides the MATLAB Engine and MX Array 
Manipulation libraries as an external interface by which 
MATLAB  can be called from within C programs.  We used the 
Perl XS interface to define Perl bindings for the Mathworks® C-
libraries. It is through these bindings that the MATLAB 
Handler, which is a Perl class, executes analysis modules 
implemented in MATLAB. 
 

5. VALIDATION & EFFICIENCY 
 
Executing an analysis chain of OME MATLAB modules must 
produce exactly the same results as running it natively in the 

Figure 2: This OME analysis chain is a workflow of 12 
MATLAB  analysis modules that computes an image’s 
signatures. 



MATLAB environment. We tested the OMEIS & OMEDS 
connections independently and also did a comprehensive test by 
executing analysis chains with known results. 

OMEIS enforces, through the use of SHA1 digests, a 
uniqueness constraint on all pixels. We exploited this constraint 
to test the OMEIS –MATLAB connection. We wrote a 
MATLAB script that would connect with OMEIS, download 
each pixels set to serve as a template, and replicate this template 
as a new pixels set. The replication was designed to use the 
maximum number of OMEIS MATLAB functions. When we 
ran this script against our local OMEIS installation (10,000 
images, 100+ GB) we observed that the PixelsIDs returned 
were the same as the input PixelIDs, indicating that the pixels 
SHA1 digests were always identical. 

The underlying PostgressSQL database stores real and 
double precision according to the IEEE Standard 754 for 
Binary Floating-Point Arithmetic. MATLAB, on the other 
hand, uses denormal numbers to store very small numbers at 
lower precision. This arcane point implies that for the few 
applications that use very small floating-point numbers, 
OME and MATLAB results differ. 

We wrote a “glue” MATLAB script to mimic an OME 
analysis chain by connecting individual MATLAB modules. 
We compared the results of this script, where intermediate 
results are always kept within MATLAB, to the equivalent 
chain computed with the OME analysis engine, where 
intermediate results pass through OMEIS and the database. 
All 800 results varied by less than 10-1 2. 

The overhead due to OME managed execution depends on 
the number of MATLAB modules and  how many 
inputs/outputs they each have. Although it is probably better 
from a data-modeling and modular design perspective to have 
many smaller modules, it increases overhead in an OME-
based implementation. Currently 75% of the total real-world 
execution time is spent within the MATLAB modules and the 
other 25% is OME overhead. We measured this by executing 
the signature chain (Figure 2) on a dataset containing 20 16-bit 
200x200 images.  It ran 6 minutes per image. 

 
6. DISCUSSION 

 
The MATLAB Handler has been developed as a solution to a 
specific problem: porting our automated image classification 
system, implemented in MATLAB, into an OME chain of 
analysis modules that could be executed by the analysis engine. 

Designing the execution instructions has been a 
compromise between the simplicity of the XML syntax and 
generality. Syntax complexity is also highly correlated with the 
cost of developing the handler implementation. There are 
innumerable valid use-cases for conversion of inputs and outputs 
from MATLAB functions into OME attributes. 

Modularizing the image classifier resulted in 12 diverse 
MATLAB analysis modules. We found that there are a handful 
of common patterns for specifying inputs and outputs to 
MATLAB functions and that we can support most MATLAB 
functions in OME without modification:  approximately 20% of 
MATLAB functions will require MATLAB wrappers that do 
additional data-conversion. Alternatively, a Perl class based off 
of the MATLAB Handler can be written to implement any 
module-specific interface. 

Although motivated by a specific application, the 
MATLAB Handler is a general method for integrating analysis 
routines implemented in MATLAB with biological data stored 
in OME. Our use-case validates that OME managed analysis 
execution doesn’t corrupt data and that execution instructions 
are sufficiently expressive to wrap around real-world image 
analysis routines. We found that integration of a module has a 
shallow learning curve. 

Other projects, such as the microarray analysis platform 
GenePattern, also have integrated MATLAB with a data store. 
[10] Our MATLAB handler is markedly different. Firstly, our 
approach is very general–the required interface is specified per 
MATLAB module in XML—so most legacy applications are 
supported without alteration. Secondly, since the handler is 
based on the OME extensible data model, it is not limited to 
genomic/proteomic data but supports any textual, numerical, and 
visual data.  

Planned future work involves adding support for accessing 
OME meta-data in the MATLAB interactive environment and 
further optimizations to lower OME analysis engine and 
MATLAB Handler over-head. 
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