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INTRODUCTION

Quantitative analysis of micro-
scope images forms a growing part 
of modern cell biology. It is all too 
easy for such studies to generate vast 
amounts of data, which can become 
difficult to keep track of (1–5). The 
Open Microscopy Environment (OME) 
software system (1,3–6) was developed 
to provide a flexible, powerful, and 
freely available platform for storing, 
viewing, and analyzing such images, 
and has a clear audit trail to link all 
images with the analyses performed on 
them. It allows automated mining and 
analysis of image sets independent of 
the particular system originally used 
to capture the images. It facilitates 
analysis of these image sets using 
built-in or third-party image-analysis 
programs. Because images can be 
arranged in groups as required, and 
analyses can be performed on entire 
groups, automated image analysis of 
such groups of images is possible to 

an extent not readily achievable by 
methods that require manual analysis 
of each image separately.

A particular strength of OME is 
that it allows for a highly structured 
description (data model) of the infor-
mation that it stores (6) and encourages 
the reuse of these data models in 
different algorithms and “viewers”—
software that can display the images 
themselves or that can take the results 
of such algorithms and display quanti-
tative information about them (e.g., a 
spreadsheet application). The benefit 
of using common data models is the 
transparent exchange of structured 
information between independently 
developed software.

Common analysis tasks in imaging 
are finding spots or “blobs” in images 
based on various criteria and obtaining 
structured information to describe them 
(positions of the blobs, their sizes, 
shapes, intensities, etc.). Although 
various spot-finding tools have 
been described, none can fully take 

advantage of the unique informatics 
abilities of OME. Here, we describe 
and validate FindSpots, an analysis 
package that is fully integrated into 
OME, version 2.4.

FindSpots can automatically 
detect and quantify spot-like objects 
within microscope images, whether 
they be two-dimensional (2-D) flat 
images or three-dimensional (3-D) 
image stacks. It can also be applied to 
images collected using more than one 
wavelength and can analyze time-lapse 
movies, which allows for subsequent 
tracking of the objects in 3-D. Thus, 
the algorithm is capable of operating 
in all five dimensions accessible on a 
modern digital microscope (4,7). The 
algorithm underlying FindSpots itself 
has been used in earlier work (8,9), but 
the current work represents the first 
integrated use of FindSpots and OME 
and the first example in the context of 
OME of its use to perform complex 
biological image analysis.
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THEORETICAL BASIS

Approaches to Object Detection/
Tracking

Object finding (and therefore 
object tracking) in FindSpots and in 
many other image-analysis programs, 
including the commercial package 
Volocity® (Improvision®, Coventry, 
UK; www.improvision.com/products/
Volocity), is based on a procedure 
known as global thresholding, 
whereby in any one image, all pixels 
above a certain minimum value are 
potentially considered to be part of 
an object (subject to a minimum spot-
size requirement). An unavoidable 
problem with defining objects based 
on a threshold—especially a global 
one—is that whatever value it is set to, 
some subthreshold pixels that ideally 
should form part of the objects can be 
lost. However, lowering the threshold 
to include these pixels will cause too 
many artifactual pixels to be included 
(10). Where spot contrast or cellular 
background varies widely within an 
individual image, such unwanted 
omission or inclusion of pixels is more 
likely to be a problem, and it may be 
necessary to use adaptive thresholding 
algorithms, which allow the threshold 
to be varied within any one image 
(11) or employ advanced background 
correction methods. Indeed, methods 
other than thresholding (e.g., edge 
detection) can sometimes be helpful 
for image segmentation (i.e., the identi-
fication of objects within an image) 
(11). However, with any segmentation 
method, it is inevitable that some pixels 
that should form part of spots will be 
omitted and vice versa; no segmen-
tation algorithm is perfect and any such 
quantitative analyses will inevitably be 
approximations (10,12). Moreover, in 
many cases, a low level of misclassifi-
cation will not matter in practice.

Additionally, although we present 
here a simple but effective method 
for background correction, more 
advanced variations on this, as well as 
other specialized algorithms, also exist 
and are worth noting (www.molecu-
lardevices.com/technotes_d1/MDC_
D1_D50022_MorphologyFilters.
pdf; References 10, 13, and 14), but 
a full discussion of these procedures 

is beyond the scope of this article. In 
general, it should be noted that sophis-
ticated segmentation algorithms are no 
substitute for high-quality image data 
when performing quantitative image 
analysis.

Finally, it should be noted that a 
number of different methods for setting 
a global threshold exist in the literature 
(for examples, see References 11, 15, 
and 16 and references therein), and 
FindSpots implements a number of 
these: an absolute intensity threshold, a 
variety of statistical intensity thresholds, 
maximum entropy, Kittler, Moment 
Preservation, and Otsu’s. However, 
in practice only an absolute or statis-
tical intensity threshold are suitable 
for typical fluorescence microscopy 
images, as the others will yield inappro-
priate thresholds for such images.

The tracking method in OME is 
implemented as a separate routine 
called TrackSpots. TrackSpots is a 
simple algorithm that tracks objects 
found by FindSpots or other segmen-
tation algorithms that use OME’s 
data model to describe spots. For 
each spot in a time point, TrackSpots 
searches the subsequent time point 
for a nearest neighbor and assigns 
it to the given spot’s trajectory. An 
essentially identical algorithm is used 
for particle tracking in many other 
software programs. More advanced 
tracking methods also exist, although 
it is beyond the scope of this work to 
discuss these in detail. These include 
SpotTracker (17), which is optimized 
for tracking single particles in very 
noisy 2-D microscope images, and the 
TIKAL image-analysis platform (18), 
which allows 2-D or 3-D tracking of 
objects within cells while correcting 
for cell movements or deformations.

Object Finding in FindSpots

A description of the FindSpots 
algorithm has been published (9). In 
brief, for each image, FindSpots calcu-
lates a threshold intensity level; any 
pixels below this value are considered to 
be background signal and are ignored, 
and any pixels above the threshold 
may form part of a spot as long as 
the spot thus formed is above a preset 
minimum volume. FindSpots defines a 
spot as a set of adjoining pixels above 

the threshold. The algorithm works 
recursively: starting with an initial 
seed pixel, it checks all the adjoining 
pixels once to see if they are above 
the threshold (i.e., if they are bright 
enough). Any such pixel is added to 
the spot being formed, and the process 
starts again from that pixel, checking 
all its adjoining pixels for those above 
the threshold. Whenever an adjoining 
pixel is found to be below threshold, 
the algorithm excludes that pixel from 
the spot and does not search beyond 
it. This process is mathematically 
guaranteed to reach every contiguous 
pixel above the threshold and therefore 
will work with spots of any shape.

Object Tracking in OME Using 
TrackSpots

FindSpots can, in combination with 
the TrackSpots routine, analyze time-
lapse movies, and these results can 
be used to track spots between time 
frames, assigning them to trajectories.

The initial implementation of 
TrackSpots (8,9) predated the OME 
system and was a command-line 
program that could operate on a single 
five-dimensional (5-D) file format 
produced using a DeltaVision® micro-
scope (Applied Precision®, Issaquah, 
WA, USA). This program performed 
both finding and tracking functions and 
produced a table of outputs that could 
be further processed in Microsoft® 
Excel®. It could not be exported easily 
to other file formats and was difficult 
to work with due to the many files and 
spreadsheets to keep track of when 
processing just tens of images, not 
to say hundreds or thousands. In its 
present implementation, the algorithm 
was altered so that it can readily handle 
any image format OME can import. 
Notably, the tracking function was 
removed and implemented in a separate 
algorithm in order to prototype different 
tracking techniques more easily and to 
demonstrate modular analysis in OME 
by defining common data models.

When using FindSpots with 
TrackSpots in its current implemen-
tation for object tracking, it is recom-
mended to apply it only to images with 
well-spaced objects in order to avoid 
the introduction of errors in tracking. 
The tracking algorithm currently used 
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is a simple nearest-neighbor search for 
the spot in the next time point, but this 
algorithm can be easily replaced and 
will continue to work with the original 
FindSpots, or with a different type of 
segmentation algorithm that can use the 
same data model for the 5-D objects it 
finds. The result of using the tracking 
feature is a set of trajectories composed 
of the spot objects originally created 
by FindSpots, as well as additional 
measurements for each spot such as the 
X, Y, Z displacement and distance to 
the next spot.

Threshold Calculation

Although a single and constant 
threshold can be used for all images, it 
is preferable to determine the threshold 
specifically for each image to allow for 
variation in background levels. This can 
also be important in time-course data 
where photobleaching may occur in 
which setting a fixed threshold based on 
early time points could lead the routine 
to miss spots at later times. A number of 
algorithms to determine threshold are 
available in FindSpots, but for typical 
fluorescence microscopy images, 
only Absolute, RelativeToMean, and 
RelativeToGeometricMean are appro-
priate. These are, respectively, an 
absolute invariant pixel value or values 
corresponding to a user-defined number 
of standard deviations above the arith-
metic (μa) or geometric (μg) means:

RelativeToMean  
Threshold = μa + nσa

RelativeToGeometricMean 
Threshold = μg + nσg

where n is a constant for all images 
in any one analysis, σa is the arith-
metic standard deviation, and σg is the 
geometric standard deviation. These 
statistics are calculated for each X, Y, 
Z stack by a separate OME module 
and then passed on to FindSpots by the 
OME analysis engine. We typically used 
values of n = 3 or n = 4 for the images 
discussed here. The other important 
parameter to set is the minimum spot 
volume, which should be large enough 
that random bright dots (noise) that are 
too small to be spots are not mistakenly 
identified as spots of interest.

Background Correction and  
Other Considerations

When performing quantitative image 
analysis, it is important to correct for 
differences in background intensity so 
that all images are on a level playing 
field—especially if looking for subtle 
effects. Where possible, such differ-
ences should be minimized by identical 
treatment of all samples and by optimi-
zation of the optical system (13), but 
it is almost inevitable that differences 
will remain. Depending on the intended 
analysis, these differences should be 
removed prior to running FindSpots 
or used to adjust the spot statistics 
generated by the program. Many 
simple approaches to background 
correction exist, and as long as all 
images are treated equally, it often will 
not matter which method is chosen. For 
fluorescence images, one such method 
is to measure manually the average 
pixel intensity of one or more small 
regions of each image that should, 
in principle, be constant between all 
images analyzed in the experiment 
(but in practice will vary, which is 
why it needs to be taken into account) 
and use the result to correct either the 
entire image prior to processing, or the 
reported spot intensities. The location 
of such regions will depend on the 
question being studied and the known 
biology of the system, but may include 
the cytoplasm or simply the black space 
between cells on a slide.

In cases where the spots occupy a 
relatively small total volume relative 
to the volume of the whole image, as 
is the case with the kinetochore data 
presented herein, the average pixel 
intensity over all pixels in the image 
will provide a simple but effective 
measure of the background, and this 
can be obtained directly from OME. 
However, as discussed above for 
thresholding, it is important to crop the 
image in order to avoid this background 
estimate being overly skewed by irrel-
evant parts of the image.

SPECIFICATIONS AND 
IMPLEMENTATION

We discuss here some of the 
practical considerations necessary for 

successful application of the method 
to the analysis of microscope images. 
Detailed instructions for installing 
OME and using FindSpots are available 
online at www.openmicroscopy.org/
howto.

Image Formats

Any file imported into an OME 
system can be analyzed using 
FindSpots. Indeed, this is one of the 
major advantages of an OME-associated 
analysis application such as FindSpots: 
any image that is imported in OME can 
be processed using FindSpots, and as 
more importers for proprietary formats 
are developed for OME, FindSpots or 
any other segmentation algorithm used 
in OME will be able to read them. A list 
of currently supported formats can be 
found online at www.openmicroscopy.
org/getting-started/import.html.

OME/FindSpots is similar to the 
ImageJ software tool (4,19) in many 
ways, as the latter is also an open-
source program with support for many 
formats and several segmentation 
algorithms. What distinguishes OME/
FindSpots from ImageJ (and many other 
commercial imaging applications) is a 
5-D model of microscopy images and a 
mechanism for expressing, storing, and 
managing structured numerical data.

Image Capture and Preparation

Images containing spot-like objects 
to be analyzed using FindSpots can be 
collected on essentially any microscopy 
platform. Images can consist of single 
planes or multiple optical sections. 
They can contain data collected from 
any number of emission wavelengths 
using any number of time points in a 
time series.

Depending on the contents of the 
image, and especially if a set of images 
will be analyzed using FindSpots in an 
automated way, optimally each image 
should be captured or cropped (in all 
three axes) so as to contain primarily 
the region or cell/tissue of interest, with 
minimal black background or neigh-
boring cells/tissue. This can usually 
most easily be accomplished using the 
same software suite originally used to 
capture the images. Doing this prevents 
the subsequent automatic thresholding 
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or background determination (discussed 
above) from being skewed by unwanted 
signals from other parts of the image.

Indeed, successful quantitative 
analysis of microscope images requires 
careful attention to the initial collection 
of images at the microscope. Factors 
that may introduce unwanted variation 
must be minimized or eliminated. For 
example, all images from a single exper-
iment that are to be compared directly 
against each other should always be 
collected using the same microscope 
and lens, the same illumination settings 
(e.g., laser power), and with identical 
exposure times and binning settings 
(where this is an option) for any given 
wavelength channel.

FindSpots Output

Prior to further analysis, it is 
important to verify that the results of 
applying FindSpots to a set of images 
are sensible in order to ensure that the 
parameters have been set correctly and 
that the image files used are in fact 
suitable for analysis. Inspection of the 
results of a few representative images 
is normally sufficient for this. Simple 
checks include whether the total 
number of spots found is reasonable, 
and whether their positions match those 
detectable by eye.

The results of running FindSpots 
can be viewed through a web browser. 
The location of spots identified by the 
software can be verified by viewing an 
overlay of FindSpots’ output with the 
original image, as shown in Figures 
1B and 2B. Each blue circle repre-
sents the “centroid” (center of mass 

weighted by pixel intensity) of a spot 
found by FindSpots, either limited to 
the corresponding optical section being 
displayed or across all optical sections, 
according to user settings. Note that 
in some instances, what appears to 
be two or more separate spots may be 
identified by the algorithm as a single 
spot; this can occur if at any point in the 
image stack, there are pixels bridging 
the gap between the two spots. Since 
the algorithm works in 3-D, these two 
spots are actually identified as a single 
spot, so only one centroid would be 
reported for such a cluster. Depending 
on the goals of the analysis, this is not 
necessarily a problem, and indeed this 
phenomenon can also occur with object 
finding algorithms other than global 
thresholding. In some cases, it may be 
possible to resolve this by raising the 

threshold slightly.
The raw numerical 

output can be transferred 
to a spreadsheet for further 
mathematical processing, 
such as averaging, 
summation, or plotting of the 
spot data. Indeed, the power 
of OME stems in large part 
from its ability to analyze 
many images quantita-
tively and automatically. To 
process the results of such 
an analysis, specially written 
macros have been developed 
to import the results directly 
into Microsoft Excel, where 
the spot statistics from many 
images can be collated into 
a single file and analyzed. 
For example, the total spot 
intensity for each emission 
channel can be determined 
for each image and plotted 
for all images.

Using the Software

FindSpots is part of 
the standard installation 
of OME, which can be 
downloaded at www.
o p e n m i c r o s c o p y. o r g . 
Currently, installation is 
simplest on a Macintosh 
running OS X, because 
a graphical installer is 
available for this system, 
but not currently for other 

Figure 1. Validation of FindSpots by analysis of fluorescent beads. A set of deconvolved optical sections of fluo-
rescein isothiocynate (FITC)-conjugated beads (2.5 μm diameter) was analyzed using the object-finding features of 
FindSpots and Volocity. (A) A maximum-projection view of all the optical sections (generated in Volocity), showing 
the beads analyzed by both methods. (B) A screen-shot from FindSpots: a single optical section is shown (hence not all 
beads are equally visible), overlaid with all spots identified in this and all other optical sections (blue circles). Note that 
the image is shown in gray scale solely for improved contrast of the blue circles. Scattergraphs showing the correlations 
between (C) the spot volume and (D) the surface area measurements obtained using Volocity and FindSpots. Note the 
weaker correlation for surface area.
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operating systems. The OME server 
needs to run on a UNIX®-based 
operating system (e.g., OS X, Linux, or 
BSD). However, OME’s user interfaces 
can be run on any platform. Images 
to be analyzed are first imported into 
OME and grouped into one or more 
data sets before FindSpots can be run 
on the desired data set. After setting 
user-defined analysis parameters, the 
software will automatically analyze 
each image within the data set in turn. 
Results can be viewed online in a web 

browser or imported into Microsoft 
Excel for further analysis.

VALIDATION

Validation Using Fluorescent Beads

To validate the FindSpots analysis 
algorithm, we used an image of 
fluorescent beads as a simple test 
sample. We analyzed this using 
FindSpots and an alternative package, 

Volocity version 3.6, and performed 
a pairwise comparison of the results 
for each spot identified. Volocity is an 
established commercial image-analysis 
software package designed for visual-
izing 3-D microscope images and for 
detecting and tracking objects within 
these images. Although it is a very 
powerful package, Volocity, unlike 
FindSpots, is not integrated as part of 
an image informatics suite and cannot 
automatically perform such analyses 

Figure 2. Using FindSpots to establish protein dynamics of Bub1 at kinetochores in fibroblasts. (A) Optical section of a wild-type cell, labeled with the 
DNA marker 4′,6-diamidino-2-phenylindole (DAPI) (blue); CREST, a kinetochore-specific antibody (red); and anti-Bub1 antibody (green). Image generated 
using softWoRx Explorer. (B) FindSpots output (gray scale view of kinetochore marker channel only) for optical section shown in A. Blue circles indicate spots 
identified by FindSpots—only those whose centroids are located in the current optical section are displayed. The image data used to generate this section is 
identical to that in panel A, but the images appear different as each software package uses different standard rules for displaying images: if panel B is simply 
reflected horizontally and rotated clockwise through 90°, it will match panel A. (C) Histogram summary of 22 cells analyzed via FindSpots. (D) Boxplot (35) of 
same data, showing more clearly the reduction of Bub1 at kinetochores from prometaphase to metaphase. The plot was generated by SPSS version 13.0; num-
bers indicate the sample count in each case. The upper and lower boundaries of the box represent, respectively, the lower (LQ) and upper (UQ) quartiles of the 
data, and the thick line within the box shows the median. The vertical lines (“whiskers”) show the upper and lower ranges of the data, excluding outliers. Mild 
outliers are defined in SPSS as those points more than 1.5 × (UQ-LQ) from the median and are shown as an “°”, whereas extreme outliers are those more than 
3 × (UQ-LQ) from the median, and are represented by “*”.
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for all quantitative measurements to be 
compared against one another where 
possible.

Biological Images: Application and 
Validation of FindSpots

A particular strength of using 
FindSpots in OME is that it can 
automatically process large numbers 
of images, the results of which can be 
analyzed en masse using Microsoft 
Excel. As part of a study investigating 
the regulation of mitosis, we measured 
the amount of two mitotic check-
point proteins, Bub1 and BubR1, at 
kinetochores during different stages 
of mitosis using images of mitotic 
cells. Comparing the results to those 
expected from the literature (measured 
by other means) provided a method to 
validate FindSpots on real, complex 
biological images, and also illustrated 
how OME/FindSpots can be applied to 
answer biological questions.

Many of the components of 
the spindle checkpoint machinery, 
including Bub1 and BubR1, associate 
dynamically with kinetochores 
throughout mitosis (20,21). We used 
FindSpots to quantify the amount of 
kinetochore-associated spindle check-
point proteins, Bub1 and BubR1, in 
cells at different stages of mitosis. The 
mitotic spindle checkpoint functions to 
ensure proper chromosome attachment 
to mitotic spindles before chromo-
somes segregate into daughter cells 
(22). Defects in this checkpoint result 
in mitotic defects, including chromo-

on a collection of images; rather, the 
user is required to repeat the analysis 
manually for each image.

InSpeck™ Green microspheres 
(Molecular Probes™; Invitrogen, 
Paisley, UK) with a diameter of 2.5 
μm were mounted in Hydromount™ 
(National Diagnostics, East Riding 
of Yorkshire, UK) and imaged using 
a DeltaVision wide-field deconvo-
lution microscopy system (Applied 
Precision). The deconvolved image 
used for analysis (Figure 1A) was 
cropped to reduce distortions at the 
boundary, yielding an 81-section, 929 
× 919 pixel, 16-bit image.

The exact values employed for 
threshold level and minimum spot 
volume were not critical in this case, 
but it was important to use the same 
value for each method to permit a 
meaningful software comparison. 
Hence, an identical absolute threshold 
value and equivalent minimum object 
volumes (accounting for different 
units used) were set manually for each 
program, which led to the detection of 
all beads in the image (although groups 
of beads which were very close together 
were detected as single spots) as shown 
in Figure 1B. To compare the results of 
the two software routines, spot statistics 
were compared for all spots found. The 
mean absolute percentage difference 
was calculated to provide a comparison 
of how the absolute values reported 
by each package compared, whereas 
the Pearson correlation coefficient, r, 
showed the extent of the linear corre-
lation between the statistics generated 
by the two packages. Both packages 
found the same number (n = 131) of 

spots in the image. To ensure that we 
compared statistics from corresponding 
beads in each program’s output, output 
tables were sorted by the X, Y, Z coordi-
nates of the spot centroids. Visual 
comparison of the locations of a random 
subset of 15 spots showed this to be a 
generally reliable way of matching 
up spots between the two packages—
manual correction was needed for just 
two spots.

The comparison between FindSpots 
and Volocity, summarized in Table 1 and 
Figure 1, showed that the two packages 
gave results that were highly correlated 
(r > 0.999) for all seven parameters 
common to both packages. However, 
spot surface areas showed a distinctly 
lower, albeit still very high, correlation. 
A more striking difference was seen 
when comparing absolute values: both 
packages yielded essentially identical 
values for all spot parameters, except 
for surface areas, which differed by 
an average of 57%. This turned out to 
reflect a difference in the methods used 
to calculate the surface areas of objects. 
Nonetheless, these results show that 
the spot statistics produced by the two 
software packages were highly corre-
lated, confirming that FindSpots can 
be used to make internally consistent 
comparisons between images.

In summary, this analysis confirmed 
that the spot-finding algorithm used 
by FindSpots works as expected. It 
also highlights the need to be careful 
if analyzing data from a single exper-
iment with more than one software 
package—because of software-specific 
differences in certain calculations, it is 
recommended to use the same package 

Table 1. Comparison of FindSpots with Another Object-Detection Package

Spot Parameter FindSpots Versus Volocity (n = 131)

Spot Statistic Pearson Correlation Coefficient Mean % Absolute Differencea

Total intensity 1.0000 0.0738 ± 0.045

Mean intensity 1.0000 0.0358 ± 0.017

Volume 1.0000    0.110 ± 0.060

Surface area   0.99908  57.6 ± 2.7

Centroid X    1.00000  0.0171 ± 0.027

Centroid Y    1.00000  0.051 ± 0.23

Centroid Z   0.99987  0.229 ± 0.29

The image in Figure 1A was analyzed using equivalent parameters in FindSpots and Volocity.

aDefined for each type of spot statistic, as the mean, over all spots, of the absolute percentage difference (APD) between software packages, where

APD = |(FindSpots value - Volocity value)/FindSpots value| × 100; ± the standard deviation of the APD. Shown to 3 significant figures ± 2 significant figures.



Vol. 41 ı No. 2 ı 2006 www.biotechniques.com ı BioTechniques ı 205

Research Reports

somal instability, an important charac-
teristic of tumor cells (23).

Unsynchronized mouse fibroblasts 
were fixed and double-stained with 
antibodies against the kinetochore 
marker, CREST, and antibodies against 
either Bub1 or BubR1 (we present data 
only on Bub1 here). Cells were also 
stained with 4′,6-diamidino-2-phenyl-
indole (DAPI) to visualize chromo-
somes. 3-D images of mitotic cells 
were cropped in the X/Y plane so that 
each image contained only one cell and 
minimum nearby space. Images were 
also cropped in the Z plane so that only 
regions of the cells containing kineto-
chores were included. Kinetochore 
spots were identified within each 3-D 
image stack using FindSpots by thresh-
olding on the CREST channel. The total 
fluorescence intensity at these spots 
was then automatically computed for 
the other wavelength(s) corresponding 
to Bub1 and/or BubR1 staining. This 
allowed kinetochore-associated signals 
to be accurately defined even in images 
where the Bub1 or BubR1 signal-to-
noise ratio was not sufficiently high 
to easily define kinetochores. For 
each image, the measured intensity 
value was normalized by dividing it 
by the total spot volume in that image 
(i.e., the total kinetochore volume). 
The data were then sorted according 
to the mitotic stage of each individual 
cell, namely prophase, prometaphase, 
prometaphase-to-metaphase transition 
(when most but not all chromosomes 
were aligned on the metaphase plate), 
metaphase, and anaphase.

Figure 2 shows an example of the 
images used (Figure 2A), the results of 
applying FindSpots to it (Figure 2B), 
and two alternate ways to represent the 
data from all images analyzed in this 
experiment (Figure 2, C and D).

The relative amount of kinetochore-
associated Bub1 that we measured 
throughout mitosis using this method 
agrees well with previous studies of 
Bub1 dynamics at kinetochores during 
mitosis (20,24), which independently 
validates the use of our method to 
quantify proteins in biological images.

Applying FindSpots to Study the 
Effect of a Tumor-Suppressor 
Protein

We employed a similar approach 
(unpublished data) to gain insight 
into the mechanism of spindle 
checkpoint defects that we found in 
cells lacking the tumor suppressor, 
adenomatous polyposis coli (APC) 
(25,26). Colorectal cancer, one of the 
most common cancers in the Western 
world, is associated with mutations 
in APC; lack of and mutations in the 
APC protein can interfere with normal 
mitosis (27–29). APC binds to the 
kinetochore-associated mitotic check-
point proteins, Bub1 and BubR1 (30).

We used OME/FindSpots to measure 
levels of kinetochore-associated Bub1 
and BubR1 in APC-deficient mouse 
fibroblasts and compared these with 
levels in wild-type control cells, 
using the approach described above. To 
compare cells at uniform mitotic stages, 
we arrested them with monastrol. 
This Eg5 kinesin inhibitor prevents 
centrosome separation and arrests cells 
with their chromosomes arranged in a 
rosette around centrosomes, leaving 
their checkpoint active (31).

Results from wild-type cells and 
APC-deficient cells were compared 
using standard statistical tests. The 
data was first analyzed using an F-test 
to determine if there was a significant 
difference (at the 5% level) between the 
variances of the two groups. For both 
Bub1 and BubR1, this difference was 
not significant here, and so unpaired 2-
tailed Student’s t-tests assuming equal 
variances were performed to compare 
the means.

Analyzing the relative amount of 
Bub1 (Figure 3) and BubR1 at kineto-
chores using this method revealed a 
statistically very significant decrease 
in kinetochore-associated Bub1 in APC 
mutant cells (P < 0.01), but for BubR1 
the difference was not significant at 
the 5% level (data not shown). This 
result further illustrates how OME 
and FindSpots can be used to extract 
statistically significant biological infor-
mation from complex image data.

DISCUSSION

This study arose out of the need to 
answer a biological question through 
the quantitative analysis of a large 
number of images obtained from 
fluorescence microscopy. Alternative 

methods investigated were either too 
complex to be of use or would have 
required a manual analysis of each 
image—given that potentially hundreds 
of images were to be analyzed, an 
automated method was desirable. 
FindSpots/OME was identified as an 
appropriate tool, was further developed 
to produce the tool described here, and 
is well suited to meet this task. One 
of the attractive features that led to its 
selection was that even though the suite 
of tools then available in OME was not 
fully adequate to complete this task at 
first, this software is open-source and 
thus could be readily adapted. OME 
features the ability to import various 
proprietary file formats and the easy 
automatic processing of large sets of 
images, without the need for user-
written scripts. In addition, it allows 
the integrated management of large 
amounts of quantitative results so 
that the effects of parameter variation 
can be easily evaluated, both visually 
and quantitatively. This approach to 
image analysis is powerful due to the 
integration of analysis with a data 
management system that automatically 
tracks all analysis results, making it 
straightforward to optimize parameters 
and manage results. Although the data 
models used by OME to describe the 
results from FindSpots did not need 
alteration for this study and will not be 
discussed further here, they formed the 
basis by which a collection of disparate 
software (e.g., API’s DeltaVision/
softWoRx microscopy system, OME, 
FindSpots, and Excel) was used 
together to accomplish a complex 
image-analysis task.

Limitations and Solutions

The integration of FindSpots with 
OME is an important addition to the 
arsenal of tools available to those 
seeking to obtain quantitative data from 
microscope images. At the same time, 
it is important to be aware of potential 
pitfalls and limitations in its use.

For analysis of cellular images as 
used here, the need to crop images 
manually to yield more meaningful 
automatic thresholding or background 
correction, as discussed earlier, can 
limit the throughput of analyses. 
However, depending on the question 
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being asked, and the distribution of the 
cells/tissue under study, this step may 
not be necessary or can be rendered 
unnecessary by modifying the original 
imaging protocol so as to minimize the 
inclusion of unwanted regions in the 
images.

As with any image-analysis package 
used to find and report parameters 
about the objects within an image, 
certain parameters are more robust 
than others. In order of decreasing 
robustness (increasing difficulty of 
obtaining accurate numbers), these 
parameters are count, position, shape, 
and total intensity. For example, slight 
variations in threshold can give very 
different results for an object’s total 
signal without necessarily affecting 
its position. In practice, however, in 
images where these objects are much 
brighter than the surrounding regions 
[as is often the case in labeled or green 
fluorescent protein (GFP)-expressing 
cells or tissues], small changes in 
threshold will in fact not significantly 
affect the reported volume or total 
intensity for such spots.

As discussed earlier, global thresh-
olding, as used in FindSpots, is not 
suitable for all image types; in cases 
with sharp variations in contrast 
across the image, a local thresholding 
algorithm, or indeed segmentation 

by methods other than thresholding, 
may be needed. This may help, for 
example, to minimize the merging of 
neighboring spots into single objects, 
without requiring such a high threshold 
that much of each spot is lost. Global 
thresholding is a robust method that 
can be applied in many cases of 
biological imaging, as evidenced by its 
use in many image-analysis packages, 
including Volocity. Nonetheless, as 
mentioned above, no segmentation 
method is perfect, and for some appli-
cations, a customized object-detection 
algorithm may need to be developed. 
The power of OME is that such 
algorithms can be developed in a choice 
of common programming environments 
and then be integrated seamlessly 
into OME, where they can be used to 
analyze images automatically within 
such data sets, as demonstrated here 
for the FindSpots algorithm. If the 
algorithms use the same data models to 
describe their inputs and outputs, they 
can seamlessly interact, allowing one to 
swap out easily the current FindSpots 
or TrackSpots algorithms for entirely 
different algorithms that perform 
similar functions.

Users should also note that no matter 
how good a segmentation method 
is, it is not a substitute for common 
sense and a visual check of a subset 

of the results to ensure that objects are 
detected broadly as expected.

Conclusions

The use of FindSpots with OME 
in the biological examples given here 
made it far quicker to obtain quanti-
tative information than would have 
been feasible by manual analysis of 
individual images. Indeed, a similar 
approach can in principle be applied 
to much larger data sets, which should 
prove useful for other applications in 
basic cell biology and in drug screening, 
as large-scale imaging studies are key 
elements of drug discovery (32–34).

Although the present work focuses 
on microscope images, OME and its 
associated software are not limited to 
just those images, and they may also 
find use for the storage and management 
of images from other devices that have 
the potential to generate large quantities 
of digital image data, such as X-ray 
crystallography equipment, infrared 
Western blot scanning equipment (such 
as the Odyssey® Imager; LI-COR 
Biotechnology, Lincoln, Nebraska, 
USA), or medical devices such as 
endoscopes. OME already has support 
for DICOM—a format commonly used 
in medical radiology.

In summary, we have shown that 
FindSpots, when combined with OME, 
is a powerful tool for image analysis. 
As well as validating the FindSpots 
algorithm, the results discussed here 
represent the first detailed account of 
segmentation in OME and the first 
use of FindSpots/OME to identify and 
quantify mitotic kinetochores. They 
also demonstrate more generally its 
potential for quantitative image analysis 
of large data sets. Using a choice of 
common programming environments, 
such as MATLAB® (The MathWorks, 
Natick, MA, USA), Perl, Java™, or 
C, users can generate customized 
analysis algorithms and apply these to 
entire collections of images in a similar 
fashion to FindSpots. This illustrates 
how OME allows a plug-in approach 
and common data models representing 
image information to implement a 
workflow for image informatics and 
analysis.
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NOTE ADDED IN PROOF

While this paper was in the proof 
stage, it was announced that a new ver-
sion of Volocity software will soon be 
released which will, unlike the current 
version discussed here, be able to per-
form tasks on multiple datasets in an 
automated way.
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